Abstract:
A memory management method, a memory storage device and a memory control circuit unit are disclosed. The method includes: sending a first operation command sequence to a rewritable non-volatile memory module to instruct a first memory module in the rewritable non-volatile memory module to perform a first operation; obtaining a first time threshold value corresponding to the first operation; updating a first counting value corresponding to the first memory module; and sending a first query command sequence to the rewritable non-volatile memory module to query a status of the first memory module, in response to that the first counting value reaches the first time threshold value.
Abstract:
A data storing method, a memory control circuit unit, and a memory storage apparatus are provided. The method includes recording a bit error count of every predetermined area of every physical erasing unit and determining whether the bit error count of one of the predetermined areas of the physical programming unit of the physical erasing unit is more than a threshold bit error count. If the bit error count of one of the predetermined areas of the physical programming unit of the physical erasing unit is more than the threshold bit error count, the method also includes storing data under a second programming mode after an erasing operation is performed on the physical easing unit. Accordingly, defective physical erasing units may be effectively employed to prolong the lifespan of the memory storage apparatus.
Abstract:
A firmware code loading method for loading a firmware code from a rewritable non-volatile memory module of a memory storage apparatus is provided. The method includes: obtaining a storage address for storing a first portion firmware code copy corresponding to a first portion of the firmware code in a first memory part; and obtaining a storage address for storing a second portion firmware code copy corresponding to a second portion of the firmware code in a second memory part. The method further includes: using a parallel mode or a interleave mode to load the first portion firmware code copy and the second portion firmware code copy respectively from the first memory part and the second memory part into a buffer memory. Accordingly, the method can effectively shorten the time of loading the firmware code.
Abstract:
A data writing method for a rewritable non-volatile memory module is provided. The method includes receiving a write command and data corresponding to the write command from a host system and temporarily storing the data into a buffer memory, and the data includes a plurality of sub-data streams. The method still includes transmitting the sub-data streams into the rewritable non-volatile memory module, thereby writing the sub-data streams into at least one physical erasing unit of the rewritable non-volatile memory module. The method further includes generating parity information based on at least portion of the sub-data streams; storing the parity information into the buffer memory and deleting the data from the buffer memory. Accordingly, the method can effectively utilize the storage space of the buffer memory.
Abstract:
A data writing method, a memory storage device, and a memory controller for controlling a rewritable non-volatile memory module are provided. The rewritable non-volatile memory module includes at least one memory chip, and each memory chip includes a plurality of physical erasing units. The data writing method includes following steps. A data is written into at least one first physical erasing unit. A first error correction code and a second error correction code are respectively generated according to the data, where a number of bits correctable to the second error correction code is greater than a number of bits correctable to the first error correction code. The second error correction code is written into a second physical erasing unit. The first physical erasing unit and the second physical erasing unit belong to the same memory chip. Thereby, the memory space can be efficiently used.
Abstract:
The present invention provides a decoding method, a memory controlling circuit unit, and a memory storage device. The decoding method includes: receiving a plurality of commands; reading a first physical programming unit to obtain a plurality of first data respectively by using a plurality of first reading voltage groups of a plurality of reading voltage groups based on a first read command of the plurality of commands and executing a first decoding operation in each of the plurality of first data, wherein a number of the plurality of first reading voltage groups is less than a number of the plurality of reading voltage groups; and executing other commands being different from the first read command of the plurality of commands when unsuccessfully executing the first decoding operation for each of the plurality of first data.
Abstract:
A memory management method, a memory storage device and a memory control circuit unit are provided. The memory management method includes: grouping a plurality of non-spare physical erasing units into a first physical erasing unit and a second physical erasing unit, and a data updating frequency of the first physical erasing unit is lower than the data updating frequency of the second physical erasing unit; selecting a third physical erasing unit from the physical erasing units belonging to the first physical erasing unit; selecting a fourth physical erasing unit from spare physical erasing units, and copying valid data stored in the third physical erasing unit to the fourth physical erasing unit.
Abstract:
A data writing method for a rewritable non-volatile memory module having a plurality of physical erasing units, and a memory control circuit unit and the memory storage apparatus are provided. The method includes grouping the physical erasing units into at least a data area, a backup area and a spare area; and setting a value obtained by summing a minimum threshold and a predetermined number as a garbage collecting threshold. The data writing method also includes getting at least one physical erasing unit from the spare area, writing data into the gotten physical erasing unit, associating the gotten physical erasing unit with the backup area and re-adjusting the garbage collecting threshold according to the number of physical erasing units associated with the backup area and the minimum threshold.
Abstract:
A memory management method, a memory controlling circuit unit and a memory storage device are provided. The method includes: configuring a plurality of super physical erasing units, wherein each of the super physical erasing units includes at least two physical erasing units. A first super physical erasing unit includes a first physical erasing unit and a second physical erasing unit that belong to different operation units. The first physical erasing unit and the second physical erasing unit store different parts of first data. The physical erasing unit storing least valid data from each operation unit is selected for executing a garbage collection procedure. Accordingly, an efficiency of the garbage collection procedure is increased.
Abstract:
A data protecting method, a memory controller, and a memory storage device are provided. The data protecting method includes following steps. A first flush command and a first write command instructing to write a first data are received from a host system. A first error correcting code and a corresponding second error correcting code having different protection capabilities are generated according to the first data. A second write command instructing to write a second data is received. After the first write command is received, a second flush command is received from the host system, and the second error correcting code corresponding to the first data is then written into a rewritable non-volatile memory module. A second error correcting code corresponding to the second data is not generated or is generated but not written into the rewritable non-volatile memory module. Thereby, data from the host system is protected.