Abstract:
A method for controlling operation of a bus and components coupled thereto is provided. The method is comprised of receiving a request for a bus transaction from one of the components coupled to the bus. Thereafter, the frequency of a clock signal supplied to at least the requesting component is increased, and the requested bus transaction is serviced. The frequency of the clock signal supplied to at least the requesting component is decreased upon completion of the requested bus transaction.
Abstract:
A memory system is provided. The memory system is comprised of a memory, a clock signal generator, a phase locked loop circuit, and a bypass circuit. The clock signal generator produces a first clock signal. The clock signal generator has a first mode of operation in which the first clock signal has a first frequency and a second mode of operation in which the first clock signal has a second frequency. The phase locked loop circuit is associated with the memory and adapted for receiving the first clock signal and providing a synchronized second clock signal to the memory. The bypass circuit is adapted to deliver the first clock signal to the memory in the second mode of operation.
Abstract:
A method and apparatus for thermally isolating a temperature sensor mounted on a printed circuit board from a heat generating component mounted on the printed circuit board is provided. Generally, a thermal isolation region, which may be comprised of a plurality of openings in the printed circuit board, is disposed about the temperature sensor to interrupt conductive transfer of heat from the heat generating component to the temperature sensor. The openings extend sufficiently far into the printed circuit board to remove at least a portion of a conductive layer, such as a power plane from the region surrounding the temperature sensor. Electrical power and signals may be provided to the temperature sensor through regions intermediate the openings.
Abstract:
A method is provided for controlling transitions between a first and second clock frequency signal in first and second components electrically coupled together and in communication with one another. The method comprises asserting a freeze signal to cause communications between the first and second components to cease. A freeze acknowledge signal is then received from the first and second components, indicating that communications therebetween have ceased. A change signal is delivered to the first and second components to cause the components to switch between the first and second clock frequency signals.
Abstract:
A phase locked loop circuit is provided. The phase locked loop circuit is comprised of a first and second divide-by-N counter, a phase comparator, a voltage controlled oscillator, a clock tree, and a feedback path. The first divide-by-N counter is adapted to receive a first clock signal and provide a second clock signal. The phase comparator has a first and second input terminal and an output terminal. The phase comparator is adapted to compare the phase of signals applied to the first and second input terminals and deliver a signal at the output terminal having a magnitude indicative of a difference in the phases of the signals. The first input terminal is coupled to receive the second clock signal. The voltage controlled oscillator is coupled to receive the phase difference signal and deliver a third clock signal having a frequency responsive thereto. The second divide-by-N counter is coupled to receive the third clock signal and deliver a fourth clock signal. The clock tree is coupled to receive the third clock signal and deliver at least one fourth clock signal. The feedback path is coupled to deliver the fourth clock signal to the second input terminal of the phase comparator.
Abstract:
A method is provided for operating an electronic device by monitoring operating characteristics of the electronic device, and determining from the monitored operating characteristics to operate at least a portion of components within the electronic device in a first, second, or third mode of operation. The first, second, and third modes of operation consume power at first, second, and third different rates. At least a portion of the components are instructed to switch between the first, second, and third modes.
Abstract:
A clock generator system for producing a number of multiple frequency digital clock signals for distribution to a number of synchronous, clocked devices, include two separate, substantially identically structured clock generator units that operate in lock-step unison. The digital clock signal outputs of one of the generator units are distributed to the synchronous, clocked devices and to an error detection circuit, that also receives the digital clock signals from other clock generator unit for comparison with one another. In the event an error is detected, the error detection circuit will produce an error signal to halt operation of the system with which the clock generator system is used, and reset the clock generator.
Abstract:
An apparatus includes a light source, a display array, a light relay, a photodetector, control circuitry, and measurement circuitry. The light source is for providing lamp light during an ON-time of the light source. The display array is positioned to receive and selectively manipulate the lamp light. The light relay is positioned to receive the image light from the display array. The photodetector is optically coupled to receive light. Control circuitry is coupled to the light source for cycling the light source and coupled to the measurement circuitry for coordinating light measurements of the photodetector.
Abstract:
A system configured to detect faults in signal lines. A system includes a first component configured to communicate with a second component via a signal path including one or more signal traces. Sense signal lines are manufactured such that at some point they are in close proximity to a signal trace which is to be monitored. The sense signal lines are configured to use parasitic coupling to redirect a portion of a signal conveyed via a signal trace to a monitoring component. The first component is configured to convey a test signal indicative of a type of test via the signal path, and a reference signal to the monitoring component. The monitoring component is configured to utilize the reference signal to ascertain a presence or absence, or characteristics of a received redirected signal. The monitoring component may optionally utilize a locally generated reference signal.
Abstract:
A method for operating a cache having a sleep mode is provided. The cache is located within a memory hierarchy of a computer system, and the method is comprised of receiving a first cache request, and servicing the first cache request. A sleep mode signal is asserted in response to completion of the servicing of the first cache request. Thereafter, a second cache request is received, and the sleep mode signal is deasserted in response to receiving the second cache request. Thereafter, the second cache request is serviced.