Abstract:
A blood collection device including a flow path to flow blood by capillary action capable of collecting a large amount of blood is provided. The blood collection device includes an introduction inlet 23 for introducing the blood of the subject M, a substrate 20 connected to the introduction inlet 23 and including a flow path 25 to flow the blood by capillary action, and a cooling body 30 for cooling the flow path 25.
Abstract:
Disclosed is a method of processing a specimen in which a target component in a specimen is processed using a specimen processing chip provided with a flow-path, the method including: introducing a fluid into a flow-path to form an interface that divides the fluid from a process liquid used for the processing of the target component with a rim of the interface on an inner wall of the flow-path, the process liquid containing particles including the target component; and moving the formed interface along the flow-path with the rim of the interface on the inner wall so as to force out the particles retained in the process liquid by the fluid.
Abstract:
Disclosed is an optical system including: a light source configured to emit light; an irradiation optical system including a diffractive optical element on which the light is incident, the irradiation optical system being configured to apply illumination light in which a plurality of diffracted lights generated by the diffractive optical element are distributed; a flow cell in which a sample containing cells is caused to flow to a position at which the illumination light is applied by the irradiation optical system; and a light receiver configured to receive light generated from each cell flowing in the flow cell, upon application of the illumination light by the irradiation optical system. The illumination light includes zero-order diffracted light whose relative intensity relative to another diffracted light is not greater than 10 times. The irradiation optical system applies the illumination light to a position through which the cell in the flow cell passes.
Abstract:
This specimen treatment chip includes: a first fluid module having a first flow channel for performing a first treatment step on an object component in a specimen; a second fluid module having a second flow channel for performing a second treatment step on the object component subjected to the first treatment step; a substrate; and a connection flow channel for connecting the first fluid module and the second fluid module disposed on the substrate.
Abstract:
Disclosed is a sample processing method for processing a target component in a sample by use of a sample processing chip having a storage portion and a droplet forming flow path, the sample processing method including: storing, in the storage portion, a mixture of the target component and a predetermined amount of a diluent for causing the target component to be encapsulated by one molecule or by one particle into a droplet; heating the mixture in the storage portion to cause thermal convection in the storage portion thereby to mix the target component and the diluent together; and in the droplet forming flow path, forming droplets in a dispersion medium, each droplet containing the diluted target component and a reagent that reacts with the target component.
Abstract:
A sample processing method comprises storing a processing liquid (11) containing a target component (10) and a diluent (12) for diluting the processing liquid (11) in a reservoir (110) of a sample processing chip (100), and agitating the processing liquid (11) and the diluent (12) in the reservoir (110) by introducing a gas into the reservoir (110). The processing liquid (11) is diluted in order to prepare a droplet forming sample (13) for forming droplets (14) individually encapsulating the target component (10).
Abstract:
Disclosed is a liquid sending method for sending liquid to a sample processing chip having a flow path formed therein, the method including: measuring a flow of a second liquid which is different from a first liquid which is introduced into the flow path in the sample processing chip; controlling the flow of the second liquid on the basis of the measured flow; and introducing the first liquid into the flow path in the sample processing chip by means of the second liquid of which flow is controlled.
Abstract:
The present specimen treatment chip includes: a first flow channel for forming a droplet containing a mixed liquid of a nucleic acid, a reagent for an amplification reaction of the nucleic acid, and a carrier to which a primer for binding to the nucleic acid is added, in a dispersion medium; a second flow channel for amplifying the nucleic acid in the droplet; and a third flow channel for mixing the droplet containing the carrier with the primer having bound to an amplification product of the nucleic acid, and a reagent for breaking down the droplet, to break down the droplet.
Abstract:
Disclosed is a specimen treatment apparatus that treats a specimen by using a specimen treatment chip including a flow channel and a connecting port communicating with the flow channel, the specimen treatment apparatus including: a placement part in which the specimen treatment chip is placed; a connector provided to be engaged with the connecting port to allow a sample containing a specimen to be injected into the flow channel through the connector; and a heating unit that is pressed on the specimen treatment chip and heats the specimen treatment chip while the connector is connected to the connecting port of the specimen treatment chip placed in the placement part.
Abstract:
Disclosed is an embodiment of a fluorescence detection apparatus comprises a photodetector that detects a plurality of colors of light; a light filter member on or above the photodetector that transmits light at or above a predefined wavelength and that cuts off light with a wavelength included in a wavelength band below the predefined wavelength, the predefined wavelength being included in a wavelength band being a sensitivity range of the photodetector; an irradiator that irradiates a fluorescent substance on the light filter member, with excitation light with a peak wavelength included in the wavelength band below the predefined wavelength; and a first correction unit that compensates for a signal of light cut off by the light filter member out of fluorescence emitted from the fluorescent substance in response to irradiation from the excitation light.