Abstract:
An atomic force microscopy probe configuration and a method for manufacturing the same are disclosed. In one aspect, the probe configuration includes a cantilever, and a planar tip attached to the cantilever. The cantilever only partially overlaps the planar tip, and extends along a longitudinal direction thereof. The planar tip is of a two-dimensional geometry having at least one corner remote from the cantilever, which corner during use contacts a surface to be scanned.
Abstract:
Measuring an electrical potential in a semiconductor element by applying one or more voltages over the semiconductor element, placing at least one conductor in contact with the semi-conductor element using a scanning proximity microscope while injecting a substantially zero current in the semiconductor element with the conductor, measuring an electrical potential in the conductor while injecting a substantially zero current in the semiconductor element with the conductor, changing the position of the conductor, and repeating the measuring and changing steps.
Abstract:
A method for measuring the resistance or conductivity between two or more conductors which are placed against a semiconductor element, wherein in order to bring the contact resistance between the conductors and the element to, to hold it at,a predetermined value during measuring, the conductors are held at a constant distance and/or under constant pressure relative to the semiconductor element.
Abstract:
An atomic force microscopy (AFM) probe and a method of manufacturing mounted probes for AFM applications. The method implements an optimized soldering procedure for mounting a probe to a holder chip. In one embodiment, a metallisation system of Ti:W+Ni+Au is applied with a SnBi58 solder paste in combination with a hotplate. The mechanical connection between the probe and holder chip is preferably rigid. The soldered probe is highly conductive and the probe-holder chip assembly shows clear resonance peaks in tapping mode AFM.
Abstract translation:原子力显微镜(AFM)探针和制造用于AFM应用的安装探针的方法。 该方法实现了将探头安装到保持器芯片的优化焊接程序。 在一个实施例中,Ti:W + Ni + Au的金属化系统与SnBi58焊锡膏一起加热。 探针和保持器芯片之间的机械连接优选是刚性的。 焊接的探头是高导电性的,并且探头支架芯片组件在攻丝模式AFM中显示清晰的共振峰值。
Abstract:
A probe tip configuration, being part of a probe (FIG. 2) for use in a scanning proximity microscope, is disclosed, comprising a cantilever beam (1) and a probe tip. Said tip comprises a first portion of a tip (2) and at least one second portion of a tip (5). Said first portion of a tip is connected to said cantilever beam whereas said second portion of a tip is placed on said first portion of a tip. Cantilever beam, first portion of a tip and second portion(s) of a tip can be composed of different materials and can be isolated each from another which makes an easy adjustement of the maximum penetration depth of the tip possible without limiting the resolution and makes it also possible to detect more than one signal of a sample at the same time using one cantilever beam.
Abstract:
Measuring an electrical potential in a semiconductor element by applying one or more voltages over the semiconductor element, placing at least one conductor in contact with the semi-conductor element using a scanning proximity microscope while injecting a substantially zero current in the semiconductor element with the conductor, measuring an electrical potential in the conductor while injecting a substantially zero current in the semiconductor element with the conductor, changing the position of the conductor, and repeating the measuring and changing steps.
Abstract:
A database method and method of using the database for determining the carrier concentration profile of a semiconductor, wherein the database includes a first set of first data, the first data being a correction factor; and a second set of second data, each of the second data including first and a second set of parameters, the first set of parameters characterizing the carrier concentration profile and the second set of parameters characterizing the measurement technique. Each data of the first set of first data is obtained from one data of the second set of data through simulation or calculation.
Abstract:
A laser atom probe system and a method for analysing a specimen by laser atom probe tomography are disclosed. The system includes a specimen holder whereon a specimen to be analyzed may be mounted, the specimen having a tip shape. The system further includes a detector, an electrode arranged between the specimen holder and the detector, and a voltage source configured to apply a voltage difference between the specimen tip and the electrode. The system also includes at least one laser system configured to direct a laser beam laterally at the specimen tip and a tip shape monitoring means configured to detect and monitor the tip shape, and/or a means for altering and/or controlling one or more laser parameters of said laser beam(s) so as to maintain, restore or control said specimen tip shape.
Abstract:
One inventive aspect relates to a method for fabricating a high-k dielectric layer. The method comprises depositing onto a substrate a layer of a high-k dielectric material having a first thickness. The high-k dielectric material has a bulk density value and the first thickness is so that the high-k dielectric layer has a density of at least the bulk density value of the high-k dielectric material minus about 10%. The method further comprises thinning the high-k dielectric layer to a second thickness. Another inventive aspect relates to a semiconductor device comprising a high-k dielectric layer as fabricated by the method.
Abstract:
One aspect of the invention discloses a method of determining the dopant profile of doped regions in a semiconductor substrate. A pump laser is used to create excess carriers in this semiconductor substrate. The excess carrier concentration will influence the reflection of a probe laser. From the reflected probe laser not only the bulk components but also the near-surface components are eliminated to only yield the bulk components.