Abstract:
The present disclosure relates to a method for manufacturing core-shell particles using carbon monoxide, and more particularly, to a method for manufacturing core-shell particles, the method of which a simple and fast one-pot reaction enables particle manufacturing to reduce process costs, facilitate scale-up, change various types of core and shell metals, and form a multi-layered shell by including the steps of adsorbing carbon monoxide on a transition metal for a core, and reacting carbon monoxide adsorbed on the surface of the transition metal for the core, a metal precursor for a shell, and a solvent to form particles with a core-shell structure having a reduced metal shell layer formed on a transition metal core.
Abstract:
A method for producing a honeycomb structure includes: a step of adjusting a penetration depth of a processing tool from an outer peripheral surface of a honeycomb structure base body having the honeycomb structure portion to a radially inward direction; and a step of forming at least one slit in the honeycomb structure base body according to the adjusted penetration depth, and wherein the penetration depth is adjusted by measuring a wall thickness of the outer peripheral wall of the honeycomb structure base body and then adding a predetermined value to the wall thickness.
Abstract:
The present invention relates to a method of reducing a metal oxide comprising the steps of preparing a mixture by mixing a metal oxide and a metal hydride (step 1) and reducing the mixture by heat treatment (step 2) and a method of producing a photocatalyst using the same, and The method of reducing a metal oxide of the present invention can easily reduce such metal oxides as TiO2, ZrO2, V2O3, and Fe2O3.
Abstract:
The invention describes a catalytic composition obtained by interaction of an alkyl titanate on the one hand with a preformed mixture of an alkylaluminium and a Lewis base on the other hand. The invention also describes the use of said composition in a process for the selective dimerization of ethylene to 1-butene.
Abstract:
The present invention relates to a method for chlorination and dehydrogenation of ethane, comprising: mixing and reacting a low-melting-point metal chloride with C2H6, such that the low-melting-point metal chloride is reduced to a liquid-state low-melting-point metal, and the C2H6 is chlorinated and dehydrogenized to give a mixed gas containing HCl, C2H6, C2H4, C2H2 and C2H3Cl. In the method, the low-melting-point metal chloride is used as a raw material for chlorination and dehydrogenation, and the low-melting-point metal produced after the reaction is used as an intermediate medium. The method has the characteristics of simple process, low cost and high yield. Moreover, some acetylene and vinyl chloride can be produced as by-products at the same time when the ethylene is produced, by controlling the ratio of ethane to the chloride as desired in production.
Abstract:
The inventive concepts disclosed and/or claimed herein relate generally to catalysts and, more particularly, but not by way of limitation, to a heterogeneous, metal-free hydrogenation catalyst containing frustrated Lewis pairs. In one non-limiting embodiment, the heterogeneous, metal-free catalyst comprises hexagonal boron nitride (h-BN) having frustrated Lewis pairs therein.
Abstract:
Novel materials having high surface area rendering them suitable for a variety of applications including, but not limited to: catalysts for methane reforming; ammonia synthesis; alcohol synthesis from syngas; hydrodesulfurization; electrocatalysis for hydrogen evolution reaction; and as corrosion-resistant supports for platinum in PEM fuel cells. In general the method comprises the formation of a high-surface area refractory metal-based material using a novel synthesis pathway that avoids the production of intermediate oxide. The method may include the in situ formation of a sacrificial support that can be removed using non-aggressive means, such as, for example, chemical etching with a mild acid or by altering reaction conditions.
Abstract:
A composition contains (A) a hydrosilylation reaction catalyst and (B) an aliphatically unsaturated compound having an average, per molecule, of one or more aliphatically unsaturated organic groups capable of undergoing hydrosilylation reaction. The composition is capable of reacting via hydrosilylation reaction to form a reaction product, such as a silane, a gum, a gel, a rubber, or a resin. Ingredient (A) contains a metal-ligand complex that can be prepared by a method including reacting a metal precursor and a ligand.
Abstract:
A nanoparticle comprises a nano-active material and a nano-support. In some embodiments, the nano-active material is platinum and the nano-support is alumina. Pinning and affixing the nano-active material to the nano-support is achieved by using a high temperature condensation technology. In some embodiments, the high temperature condensation technology is plasma. Typically, a quantity of platinum and a quantity of alumina are loaded into a plasma gun. When the nano-active material bonds with the nano-support, an interface between the nano-active material and the nano-support forms. The interface is a platinum alumina metallic compound, which dramatically changes an ability for the nano-active material to move around on the surface of the nano-support, providing a better bond than that of a wet catalyst. Alternatively, a quantity of carbon is also loaded into the plasma gun. When the nano-active material bonds with the nano-support, the interface formed comprises a platinum copper intermetallic compound, which provides an even stronger bond.