Abstract:
An internal combustion engine at least two intake valves and one exhaust valve per cylinder. The valves are actuated by an intake camshaft and an exhaust camshaft operating with variable timings. The internal combustion engine is also provided with an intake system having separate intake ducts leading to the intake valves. One control flap is provided in at least one intake duct. To optimize the operation of the internal combustion engine with regard to exhaust emissions, fuel consumption, performance, and torque, the timings of the valves and the throughputs of the intake ducts are influenced as a function of the defined characteristic map areas of a torque-rpm graph.
Abstract:
The present invention provides an internal combustion engine comprising a combustion chamber, a piston mounted within the combustion chamber and arranged to be sealingly engaged with walls of the combustion chamber, the piston being arranged for reciprocating motion between a first position in which combustion chamber is of maximum volume and a second position in which the combustion chamber is of minimum volume, wherein the combustion chamber further comprises an inlet-outlet control valve means in a region of the combustion chamber within the minimum volume defined by the piston in its second position, a fluid fuel injection means in a region of the combustion chamber within the minimum volume defined by the piston in its second position, a combustible mixture ignition means located in the region of the combustion chamber within the minimum volume defined by the piston in its second position, and the engine comprises an antechamber comprising an inlet means and spent combustible mixture outlet means, which antechamber is in communication with the inlet-outlet control valve means of the combustion chamber.
Abstract:
An internal combustion engine having at least one combustion cylinder that includes a combustion chamber provided with gas-exchange valves, and an electrohydraulic valve control device having valve actuators that actuate the gas-exchange valves. To reduce manufacturing costs and/or the installation space required for the electrohydraulic valve control device, at least two synchronously controlled gas-exchange valves are connected using a coupling element to a common valve actuator, and the connection sites of the gas-exchange valves are flexibly formed on the coupling element.
Abstract:
An internal combustion engine is provided which includes an improved exhaust valve, air/fuel injector, and timing system for operating the valves and injectors. The exhaust valve comprises a rotatable cylindrical valve body having a passage which is located in an exhaust passage. The valve body is actuated by linkage connected to an electronically controlled solenoid. The air/fuel injector comprises a housing having air and fuel reservoirs having orifices therein and an air and fuel needle for selective location each the respective orifices. Air and fuel passing through the orifices is mixed in a venturi and then passes through a screen and check valve into the cylinder. The timing mechanism is connected to the injector and valve and comprises a drum which rotates a housing. Sensors in the housing detect passage of an element on the drum, completing a circuit which actuates an exhaust valve solenoid or the injector needles.
Abstract:
Several embodiments of induction systems for internal combustion engines that achieve high power outputs without sacrificing low and medium speed running characteristics or without adverse transitional effects. Each embodiment employs a pair of intake valves connecting with each combustion chamber and served by separate intake passages. A control valve is positioned at one of the intake passages and is operated so that the idle and low load requirements are primarily served by the other intake passage. An interconnecting passage interconnects the two intake passages downstream of the control valve and close to the engine valves to improve transitional performance and mid-range torque. In one embodiment of the invention the control valve is operated in response to engine speed and load as sensed in the induction system. In another embodiment an unbalanced control valve is employed that is operated by pressure differences in the induction system. In yet another embodiment the control valve is operated in response to the exhaust gas pressure. In still another embodiment a piston type control valve is employed.
Abstract:
An internal combustion engine may include at least one cylinder, a first outlet valve and a second outlet valve for directing exhaust gas out from a combustion chamber of the at least one cylinder. The first outlet valve may include a first valve opening and a first valve body where the first valve opening is adjustable between a closed position and an open position. The second outlet valve may include a second valve opening and a second valve body where the second valve body is adjustable between a closed position and an open position. An adjusting lever may adjust one or both of the first valve body and the second valve body between the open position and the closed position.
Abstract:
An improved internal combustion piston engine that utilizes, in combination at least one poppet valve 52 of known type and a sleeve valve 5 to affect the functions of intake and exhaust gas flow. The resulting gross increase in valve area and volumetric efficiency enables the engine to produce high specific power without large valve opening durations or valve overlap and the resultant undesirable increase in low speed pollution and torque reduction. One embodiment of this invention will use the at least one poppet valve 52 as an intake valve, and the sleeve valve 5 as an exhaust valve. Another embodiment of this invention will use the at least one poppet valve 52 as an exhaust valve, with the sleeve valve 5 performing the intake valve function. Additionally, the sleeve valve may be either constantly or intermittently or incrementally moved to open or close a port through described methods. Intermittent movement of the sleeve valve may be controlled by a computer 77 in known manner, a novel advantage being that a relatively small amount of energy is required for this function because the sleeve is largely moved by friction with the piston 46 or associated parts 47, 48, 49. Another novel feature is the use of engine oil instead of a water based coolant to control heat in the cylinder sleeve area 10. This minimizes friction and significantly simplifies cylinder block design and manufacture. The use of poppet valves which are either intake or exhaust valves simplifies cylinder head design, and the elimination of cold and hot valve and port areas in the confined space of a cylinder head reduces the complexity of design for use of ceramic materials.
Abstract:
An inlet manifold active reed valve for an internal combustion spark ignition engine comprises a solenoid activated reed just upstream of the inlet poppet valve of a four stroke engine. For a two stroke engine the active reed valve is located at the entrance to the crankcase and activated by one or more miniature solenoids attached to the valve body. As an alternative, the new valve is a rotary disc valve reciprocated by an external solenoid or a rotary activator. The valve opens fully for full unrestricted flow (unthrottled) during a portion of the time the inlet valve or part is open (in terms of crankshaft angle). The portion of crankshaft angle the new valve is fully open is determined by the engine load. Under full load the new valve may be held constantly open to provide unrestricted flow to the engine inlet valve or crankcase. In the above embodiments an electronic control unit energizes the solenoid or activator in response to engine operating conditions and pollution control regulations.