Abstract:
Method for separation of effective pulses and test pulses in scintillation detectors, preferably for detection of ionizing radiation, comprising at least the following method steps: Selecting a pulsed test light source, preferably a pulsed LED, with single test light pulses of which has a chronological sequence of the relative light intensity, which differs from the chronological sequence of the relative light intensity of the measurement light pulses, feeding the test light pulses generated by the test light source into the light detector of the scintillation detector for measurement of the test light pulses by the light detector, analyzing the chronological sequence of the relative light intensities of the pulses measured by the scintillation detector, separating the measured pulses by using the different chronological sequences of the relative light intensities in test light pulses and measurement light pulses.
Abstract:
An oximeter for measuring oxygen saturation in arterial blood includes a light source for projecting light to a body member to be measured, a light responsive circuit for receiving the light which has transmitted through said body member and for generating at least first, second and third signals at three different wavelengths, and a calculator for calculating at least first SaO.sub.2 data using first and second signals and second SaO.sub.2 data using first and third signals. It is detected whether or not a difference between the first and second SaO.sub.2 data is within a predetermined level. When the difference is within the predetermined level, it is assumed that the first and/or second SaO.sub.2 data are valid, but if not, they are assumed as invalid.
Abstract:
An illustrative calibration member made from a material that scatters light may be used to perform a calibration operation with respect to an optical measurement device having a plurality of light sources and a plurality of detectors distributed among a plurality of modules. The calibration member may form an exterior surface configured to support the optical measurement device and scatter photons of light emitted by the optical measurement device. The calibration operation may be performed based on arrival times of the scattered photons detected by the optical measurement device.
Abstract:
A solar blind corona camera designed specifically for use on 60 Hz or 50 Hz AC power distribution equipment is based on the fact that electrical discharge corona only occurs above some voltage threshold level on the positive and negative voltage peaks of the AC power waveform. Between these peaks, when the AC voltage is below the discharge corona voltage threshold, the electrical discharge and resulting corona are extinguished. An image sensor is used to both capture the corona-plus-ambient light image during the corona period and the ambient light image during the non-corona period. The ambient light image is then subtracted from the corona-plus-ambient light image leaving only the corona light image which is annunciated and displayed along with the ambient light image. This process effectively renders the corona camera solar blind so it can be used both at night and during daylight.
Abstract:
A light sensing method having a sensing order adjusting mechanism is provided. The method includes steps of: in a previous sensing cycle, sensing a first light signal that is emitted by both of an ambient light source and a light-emitting component and then is reflected by a tested object; in the previous sensing cycle, sensing a second light signal that is emitted by both of the ambient light source and the light-emitting component and then is reflected by the tested object; in the previous sensing cycle, sensing an ambient light signal emitted by only the ambient light source; and in a next sensing cycle, sensing the first light signal, the second light signal and the ambient light signal in an order different from that in the previous sensing cycle.
Abstract:
An optical transmission factor is measured by using mutual measuring technology having a pair of identical units (44, 50) located on opposite sides of an object (A). Each of said units (44, 50) comprises a pair of beam splitters (47, 48), a light source means (45, 46) for illuminating an object (A) through a first beam splitter (47) and providing offset beam (56) from said first beam splitter (47), a photo-detector (49) for converting optical power from the other unit (50) and said offset beam (56), wherein each of said beam splitters (47, 48) is substantially in parallelogram shape with two pairs of confronting planes (24, 25; and 22, 23), first pairs of planes (24, 25) are not perpendicular to the second pair of planes (22, 23), one of first pair of planes (24) is mirror coated for reflecting the inside beam, so that split beams (29, 31) from single beam (27) share a common point (200) on the plane ( 23). Thus, a dust/soil free measurement with no mechanically moving means is accomplished.