Abstract:
A sampling circuit includes: a first transmission line that transmits an input signal; a second transmission line that transmits a clock signal; and a plurality of sample-hold circuits that are connected to the first and second transmission lines at a constant line distance, wherein the first transmission line transmits the input signal at a first propagation time for each of the line distances, and the second transmission line transmits the clock signal at a second propagation time that is a sum of a preset sampling interval and the first propagation time for each of the line distances.
Abstract:
Aspects of a low power memory buffer are described. In one embodiment, a sampling rate of a signal is adjusted to identify extrema of a signal. An extrema pulse is generated and, in response to the extrema pulse, a time segment and potential value of the signal are stored in a memory. In other aspects, rising and falling slopes of the signal are tracked to identify a local maximum and a local minimum of the signal. In this scenario, an extrema pulse is generated for each of the local maximum and minimum, and time segment and potential values are stored for the local maximum and minimum. Generally, the storage of analog values of the signal at an adjusted sampling rate is achieved with low power, and the signal may be reconstructed at a later time.
Abstract:
A measurement system includes a receiver configured to receive a measurement signal indicative of a parameter of a measured object. The measurement system also includes a processor configured to iteratively filter the measurement signal using a threshold value. The processor is also configured to adjust the threshold value for each iteration of filtration and determine a signal-to-noise ratio for each iteration of filtration. The processor is also configured to set a filter threshold value to the threshold value for the iteration based on the signal-to-noise ratio.
Abstract:
An analog-to-digital converter includes circuitry for receiving an analog input and converting the input to a digital signal; and non-transitory control circuitry configured for: receiving a sampling time; receiving a conversion time; determining a power up time from at least one sleep mode; and causing the digital-to-analog converter to enter into the at least one sleep mode if the sum of the power up time and conversion time is less than the sampling time
Abstract:
Aspects of a low power memory buffer are described. In one embodiment, a sampling rate of a signal is adjusted to identify extrema of a signal. An extrema pulse is generated and, in response to the extrema pulse, a time segment and potential value of the signal are stored in a memory. In other aspects, rising and falling slopes of the signal are tracked to identify a local maximum and a local minimum of the signal. In this scenario, an extrema pulse is generated for each of the local maximum and minimum, and time segment and potential values are stored for the local maximum and minimum. Generally, the storage of analog values of the signal at an adjusted sampling rate is achieved with low power, and the signal may be reconstructed at a later time.
Abstract:
A touch sensing system and a method of controlling power consumption thereof, and a display device using the same are disclosed. The touch sensing system includes a plurality of sensing units, which sample a voltage received from a touch screen and accumulate the sampled voltage, and a plurality of analog-to-digital converters converting an output of the sensing units into digital data. The sensing units and the analog-to-digital converters are divided into a plurality of groups in an idle state. Each of the plurality of groups includes at least two sensing units and one analog-to-digital converter. At least one sensing unit included in at least one group is powered down in the idle state. An analog-to-digital converter is powered on during the group it belongs to is powered on.
Abstract:
The invention broadly encompasses a system including a communications network, a plurality of remotely located data sources to provide power data, the power data including quantitative and qualitative data of one or more power generation units, and a performance monitor in communication with the plurality of remotely located data sources through the communications network, the performance monitor including a communications unit to extract the power data from the plurality of remotely located data sources, a data conversion unit to transform the power data into a common data format, a data store to store the transformed power data, and a user interface unit to display the transformed power data on one or more client devices through the communications network.
Abstract:
A circuit arrangement is provided, including a storage circuit and an output circuit. The storage circuit is configured to provide a first output signal and a second output signal. The output circuit is configured to receive the first output signal and the second output signal and configured to provide an output signal having one of a first signal level and a second signal level, and to only switch from the first signal level to the second signal level if the difference between the first output signal and the second output signal exceeds a threshold. The circuit arrangement is configured to hold the first output signal and the second output signal independent of a difference between the first output signal and the second output signal after the switching has been carried out.
Abstract:
In one example implementation, the present disclosure provides a system that includes circuitry and one or more electronic components for synchronizing data transfer from a core to a physical interface. One example can involve an apparatus for interfacing a digital core with at least one physical interface that includes a macro configured on the digital core, the macro having at least one data output, a first data input, a reset input and a sync reset output, the macro to be clocked by a first clock having a first clock rate. The first clock can be configured to clock in data from the digital core on the first data input; clock in a reset signal from the digital core on the reset input, wherein a synchronized reset signal is output on the sync reset output. The apparatus can also include physical interface circuitry and a reset sampling input.
Abstract:
A microcontroller includes a central processing unit (CPU); a plurality of peripheral units; and a peripheral trigger generator comprising a user programmable state machine, wherein the peripheral trigger generator is configured to receive a plurality of input signals and is programmable to automate timing functions depending on at least one of said input signals and generate at least one output signal.