Abstract:
Methods and apparatus are disclosed for providing an X-ray shield within an ultra-high vacuum enclosure. A shell is fabricated, leak-tested, filled with an X-ray shielding material, and sealed. An elongated twisted X-ray shield can be deployed within a pump-out channel of an electron microscope or similar equipment. The shield can incorporate lead within a stainless steel shell, with optional low-Z cladding outside the shell. Further variations are disclosed.
Abstract:
The inventive concept relates to an apparatus for processing a substrate. In an embodiment, the apparatus for processing the substrate includes a plasma chamber, a coil electrode installed around the plasma chamber, and a Faraday shield provided between the coil electrode and the plasma chamber. The Faraday shield includes a cutout having a plurality of slots formed in a vertical direction along a periphery of the plasma chamber, an upper rim provided at the top of the cutout, and a lower rim provided at the bottom of the cutout. The upper rim and the lower rim have a thermal expansion reduction means configured to reduce a difference in thermal deformation between the upper and the lower rim and the cutout.
Abstract:
Methods and apparatus are disclosed for providing an X-ray shield within an ultra-high vacuum enclosure. A shell is fabricated, leak-tested, filled with an X-ray shielding material, and sealed. An elongated twisted X-ray shield can be deployed within a pump-out channel of an electron microscope or similar equipment. The shield can incorporate lead within a stainless steel shell, with optional low-Z cladding outside the shell. Further variations are disclosed.
Abstract:
An electron-beam apparatus, for example, for the electron-beam welding of metal or other workpieces comprises an evacuatable chamber and a duct connecting this chamber with a suction source, e.g. a vacuum pump. To prevent the passage of secondary emissions, e.g. X-rays, through this duct, the invention provides a plurality of baffle members in spaced relation along the duct and swingable into a position generally parallel to the duct axis during evacuation of the chamber to prevent obstruction of the fluid flow thereto. Subsequent to evacuation and during electronbeam welding, however, the baffles, shutters or shielding members extend transversely to the axis to intercept the X-rays.
Abstract:
The invention relates to a microwave driven plasma ion source (1) for ionising a sample to be ionised to sample ions, the microwave driven plasma ion source (1) including a sample intake (6) for inserting the sample from an outside of the microwave driven plasma ion source (1) into an inside (3) of the microwave driven plasma ion source (1); a microwave generator (10) for generating microwaves for generating a plasma (101) from a plasma gas (100); a plasma torch (20) providing a plasma torch orientation direction (29) having an inside (21) for housing (2) a process of generation of the plasma (101) from the plasma gas (100) and for housing a process of ionising the sample to the sample ions by exposing the sample to the plasma (101), wherein the plasma torch (20) comprises a torch outlet (22) for letting out the plasma (101) and the sample ions from the inside (21) of the plasma torch (20) essentially in the plasma torch orientation direction (29) to an outside of the plasma torch (20), the torch outlet (22) having a torch aperture. Furthermore the microwave driven plasma ion source (1, 201) includes a shielding (4) for shielding off the microwaves from passing from the inside (3) of the microwave driven plasma ion source (1) to the outside of the microwave driven plasma ion source (1), wherein the shielding (4) comprises a shielding outlet (5) for letting out the plasma (101) and the sample ions from the inside (3) of the microwave driven plasma ion source (1) essentially in the plasma torch orientation direction (29) to the outside of the microwave driven plasma ion source (1), the shielding outlet (5) having a shielding aperture. Thereby, the shielding outlet (5) is fluidly coupled to the torch outlet (22) for letting out the plasma (101) and the sample ions from the inside (21) of the plasma torch (20) essentially in the plasma torch orientation direction (29) to the outside of the microwave driven plasma ion source (1), wherein a size of the shielding aperture is less than 150%, preferably less than 125%, particular preferably less than 110% of a size of the torch aperture, wherein both the size of the shielding aperture and the size of the torch aperture are measured in units of area.
Abstract:
Embodiments disclosed herein include a plasma source for abating compounds produced in semiconductor processes. The plasma source has a first plate and a second plate parallel to the first plate. An electrode is disposed between the first and second plates and an outer wall is disposed between the first and second plates surrounding the cylindrical electrode. The plasma source has a first plurality of magnets disposed on the first plate and a second plurality of magnets disposed on the second plate. The magnetic field created by the first and second plurality of magnets is substantially perpendicular to the electric field created between the electrode and the outer wall. In this configuration, a dense plasma is created.
Abstract:
According to one embodiment, a rotating-anode X-ray tube assembly includes a rotating-anode X-ray tube, a housing, a coolant, a first shell, an X-ray shielding member, a second shell and an air introduction unit. The first shell is provided apart from the housing and an envelope of the rotating-anode X-ray tube, and surrounds the envelope. The X-ray shielding member is provided between the first shell and the housing and apart from the housing. The second shell is provided apart from the housing to cause an airway to be formed between the second shell and the housing. The air introduction unit produces a flow of air in the airway.
Abstract:
An ion implanter having a source, a workpiece support and a transport system for delivering ions from the source to an ion implantation chamber that contains the workpiece support. The implanter includes one or more removable inserts mounted to an interior of either the transport system or the ion implantation chamber for collecting material entering either the transport system or the ion implantation chamber due to collisions between ions and the workpiece within the ion implantation chamber during ion processing of the workpiece. A temperature control coupled to the one or more removable inserts for maintaining the temperature of the insert at a controlled temperature to promote formation of a film on said insert during ion treatment due to collisions between ions and said workpiece.
Abstract:
An apparatus, which generates ionizing radiation, includes a column having a sandwich-like configuration. The column includes one or more tubes and a layer of a cured epoxy-resin mixture containing a heavy metal. The layer of epoxy-resin mixture adheres to the tube or, if the several tubes are provided, the layer adheres to the tubes. In this way, the layer defines a unit with the tube or tubes. The configuration of the apparatus provides a configuration, which is tight against exiting X-ray radiation, also in regions of breakouts and tube transitions.