Abstract:
Sensor apparatus (1, 9) is provided for sensing relative position of two objects (3a, 3b; 11a, 11b). First and second molecular components (2a, 2b; 10a, 10b), each comprising at least one electronic system (4, 13), are connected to respective objects (3a, 3b; 11a, 11b). The molecular components (2a, 2b; 10a, 10b) are arranged in mutual proximity such that an interaction between the electronic systems (4, 13) of respective components varies with relative position of the objects (3a, 3b; 11a, 11b). The interaction affects an electrical or optical property of the components. A detector (7) detects the property to produce an output dependent on relative position of the objects (3a, 3b; 11a, 11b).
Abstract:
A thermal oscillator (10) for creating an oscillating heat flux from a stationary spatial thermal gradient between a warm reservoir (20) and a cold reservoir (30) is provided. The thermal oscillator (10) includes a thermal conductor (11) which is connectable to the warm reservoir (20) or to the cold reservoir (30) and configured to conduct a heat flux from the warm reservoir (20) towards the cold reservoir (30), and a thermal switch (12) coupled to the thermal conductor (11) for receiving the heat flux and having a certain difference between two states (S1, S2) of thermal conductance for providing thermal relaxation oscillations such that the oscillating heat flux is created from the received heat flux.
Abstract:
An energy converter (10) for converting a stationary spatial thermal gradient between a warm reservoir (20) and a cold reservoir (30) into electric and/or magnetic energy is proposed. The energy converter (10) includes a thermal oscillator (11) for creating an oscillating heat flux from the stationary spatial gradient by means thermal relaxation oscillations, and a converting layer (12) coupled to the thermal oscillator (11) and configured to provide electric and/or magnetic energy by changing its electric and/or magnetic polarization due to the created oscillating heat flux.
Abstract:
The present invention relates to a device for forming topographic features on a surface of a polymer layer comprising: a polymer layer (1 ); a substrate (2) comprising a conductor, a first surface (1 a) of the polymer layer (1 ) being provided on the substrate (2); and at least one electrode (3) which, when the device is in use, interacts with a second surface (1 b) of the polymer layer (1 ), wherein, when in use, the device is operable to apply a first electrical potential (P1 ) to the at least one electrode (3) relative to the substrate (2), thereby to cause a protrusion (4) to be formed on the second surface (1 b) of the polymer layer (1 ).
Abstract:
The invention concerns a method for scanning a surface (52) of a material (50) with a scanning probe microscope or SPM (10), the SPM having a cantilever sensor (100) configured to exhibit distinct spring behaviors (C, Ck), the method comprising: - operating the SPM in contact mode, whereby the sensor is scanned on the material surface and a first spring behavior (C) of the sensor (e.g. a fundamental mode of flexure thereof) is excited by deflection of the sensor by the material surface; and - exciting with excitation means a second spring behavior (Ck) of the sensor at a resonance frequency thereof (e.g. one or more higher-order resonant modes) of the cantilever sensor to modulate an interaction of the sensor and the material surface and thereby reduce the wearing of the material surface.
Abstract:
A microsystem, comprising a first static element (1), a second, movable and unattached element (2), an actuator (3) for effecting a force between the first and the second element (1, 2), which actuator (3) is designed for controlling a temperature (T1, T2) of one of the first element (1) and the second element (2). A corresponding method for positioning a second element (2) with respect to a first element (1) in a microsystem is introduced.
Abstract:
A microsystem, comprising a first static element (1), a second, movable and unattached element (2), an actuator (3) for effecting a force between the first and the second element (1, 2), which actuator (3) is designed for controlling a temperature (T1, T2) of one of the first element (1) and the second element (2). A corresponding method for positioning a second element (2) with respect to a first element (1) in a microsystem is introduced.
Abstract:
Thermoelektrisches Element, das einen Körper aufweist, der aus einem einzigen thermoelektrischen Werkstoff ausgebildet ist und sich in einer ersten Richtung erstreckt, entlang derer bei thermoelektrischem Betrieb ein Temperaturgradient eingerichtet ist, wobei:der Körper mindestens erste und zweite benachbarte Abschnitte in der ersten Richtung besitzt;mindestens einer der Abschnitte mechanischen Spannungen unterliegt, die auf diesen Abschnitten im Wesentlichen um eine zentrale Achse des Körpers in der ersten Richtung aufgebracht werden; unddie Anordnung derart ist, dass die mechanischen Spannungen zu unterschiedlichen Beanspruchungen in den ersten und den zweiten Abschnitten führen, wodurch eine Energiebarriere im Körper erzeugt wird, um den thermoelektrischen Betrieb zu verbessern,wobei mindestens einer der Abschnitte eine auf seiner Oberfläche ausgebildete Spannungsaufbringungsschicht besitzt, um mechanische Spannungen auf diesen Abschnitt aufzubringen, welche eine Leitungsbandgrenze verschieben und eine Energiebarriere ausbilden, die Leitungselektronen nahe der Fermi-Energie blockiert.