Abstract:
A method of implementing three-dimensional (3D) integration of multiple integrated circuit (IC) devices includes forming a first insulating layer over a first IC device; forming a second insulating layer over a second IC device; forming a 3D, bonded IC device by aligning and bonding the first insulating layer to the second insulating layer so as to define a bonding interface therebetween, defining a first set of vias within the 3D bonded IC device, the first set of vias landing on conductive pads located within the first IC device, and defining a second set of vias within the 3D bonded IC device, the second set of vias landing on conductive pads located within the second device, such that the second set of vias passes through the bonding interface; and filling the first and second sets of vias with a conductive material.
Abstract:
A method is provided for fabricating a 3D integrated circuit structure. According to the method, a first active circuitry layer wafer is provided. The first active circuitry layer wafer comprises a P+ portion covered by a P− layer, and the P− layer includes active circuitry. The first active circuitry layer wafer is bonded face down to an interface wafer that includes a first wiring layer, and then the P+ portion of the first active circuitry layer wafer is selectively removed with respect to the P− layer of the first active circuitry layer wafer. Next, a wiring layer is fabricated on the backside of the P− layer. Also provided are a tangible computer readable medium encoded with a program for fabricating a 3D integrated circuit structure, and a 3D integrated circuit structure.
Abstract:
A method for far back end of line (FBEOL) semiconductor device formation includes forming a terminal copper pad (104) in an upper level of a semiconductor wafer (106), forming an insulating stack (114) over the terminal copper pad, and patterning and opening a terminal via (116) within a portion of the insulating stack so as to leave a bottom cap layer of the insulating stack protecting the terminal copper pad. An organic passivation layer (126) is formed and patterned over the top of the insulating stack, and the bottom cap layer (118) over the terminal copper pad is removed. A ball limiting metallurgy (BLM) stack (128) is deposited over the organic passivation layer and terminal copper pad, and a solder ball connection (108) is formed on a patterned portion of the BLM stack.
Abstract:
The present disclosure provides a thermo-mechanically reliable copper TSV and a technique to form such TSV during BEOL processing. The TSV constitutes an annular trench which extends through the semiconductor substrate. The substrate defines the inner and outer sidewalls of the trench, which sidewalls are separated by a distance within the range of 5 to 10 microns. A conductive path comprising copper or a copper alloy extends within said trench from an upper surface of said first dielectric layer through said substrate. The substrate thickness can be 60 microns or less. A dielectric layer having interconnect metallization conductively connected to the conductive path is formed directly over said annular trench.
Abstract:
A method of forming alignment marks in three dimensional (3D) structures and corresponding structures are disclosed. The method includes forming apertures (126) in a first surface of a first semiconductor substrate; joining the first surface of the first semiconductor substrate to a first surface of a second semiconductor substrate; thinning the first semiconductor on a second surface of the first semiconductor substrate to provide optical contrast between the apertures and the first semiconductor substrate (116); and aligning a feature on the second surface of the first semiconductor substrate using the apertures as at least one alignment mark.
Abstract:
A through-substrate via (TSV) structure that is immune to metal contamination due to a backside planarization process is provided. After forming a through-substrate via (TSV) trench, a diffusion barrier liner is conformally deposited on the sidewalls of the TSV trench. A dielectric liner is formed by depositing a dielectric material on vertical portions of the diffusion barrier liner. A metallic conductive via structure is formed by subsequently filling the TSV trench. Horizontal portions of the diffusion barrier liner are removed. The diffusion barrier liner protects the semiconductor material of the substrate during the backside planarization by blocking residual metallic material originating from the metallic conductive via structure from entering into the semiconductor material of the substrate, thereby protecting the semiconductor devices within the substrate from metallic contamination.
Abstract:
The present disclosure provides a thermo-mechanically reliable copper TSV and a technique to form such TSV during BEOL processing. The TSV constitutes an annular trench which extends through the semiconductor substrate. The substrate defines the inner and outer sidewalls of the trench, which sidewalls are separated by a distance within the range of 5 to 10 microns. A conductive path comprising copper or a copper alloy extends within said trench from an upper surface of said first dielectric layer through said substrate. The substrate thickness can be 60 microns or less. A dielectric layer having interconnect metallization conductively connected to the conductive path is formed directly over said annular trench.