Abstract:
An apparatus comprising a deformable substrate, an electrical interconnect suitable for interconnecting one or more electronic components located on the deformable substrate to one another or to one or more electronic components located on another substrate, and a support beam configured to couple the electrical interconnect to the deformable substrate, wherein the electrical interconnect comprises one or more curved sections and adjoining straight sections, and wherein the electrical interconnect is attached to the support beam via the adjoining straight sections such that the one or more curved sections are suspended over the deformable substrate to enable the electrical interconnect to accommodate strain when the deformable substrate undergoes operational deformation.
Abstract:
An apparatus and method wherein the method comprises: a deformable substrate; a curved support structure configured to support at least a portion of a resistive sensor wherein the resistive sensor comprises a first electrode, a second electrode and a resistive sensor material provided between the electrodes;at least one support configured to space the curved support structure from the deformable substrate so that when the deformable substrate is deformed the curved support structure is not deformed in the same way;wherein the resistive sensor is positioned on the curved support structure so as to limit deformation of the resistive sensor when the deformable substrate is deformed.
Abstract:
An apparatus and method wherein the method comprises: a deformable substrate; a curved support structure configured to support at least a portion of a resistive sensor wherein the resistive sensor comprises a first electrode, a second electrode and a resistive sensor material provided between the electrodes;at least one support configured to space the curved support structure from the deformable substrate so that when the deformable substrate is deformed the curved support structure is not deformed in the same way;wherein the resistive sensor is positioned on the curved support structure so as to limit deformation of the resistive sensor when the deformable substrate is deformed.
Abstract:
An apparatus includes a separator/electrolyte assembly; a first energy storage portion disposed on a first surface of the separator/electrolyte assembly; a second energy storage portion disposed on a second surface of the separator/electrolyte assembly; a first metallized piezoelectric film disposed on the first energy storage portion; and a second metallized piezoelectric film disposed on the second energy storage portion. When a force is applied to the first metallized piezoelectric film, a piezoelectric effect converts mechanical strain into electric potential and each energy storage portion stores the energy converted in the first energy storage portion and the second energy storage portion for subsequent discharge from the first energy portion and the second energy storage portion to an electronic device.
Abstract:
An apparatus including at least one processor and at least one memory including computer program code, the at least one memory and the computer program code configured to, with the at least one processor, cause the apparatus at least to provide a first state or a second state for an electrode, wherein in the first state, the electrode is configured for use in the detection of touch input, and in the second state, the electrode is configured for use in the provision of haptic feedback.
Abstract:
In accordance with an example embodiment of the present invention, an apparatus is disclosed. The apparatus includes a single battery ribbon and vacuum packaging. The single battery ribbon includes a first portion, a second portion, and an interconnecting portion between the first portion and the second portion. The first portion includes a first block. The second portion includes a second block. The first portion, the second portion, and the interconnecting portion form a continuous single layer including an anode and a cathode. The vacuum packaging surrounds the single battery ribbon. The vacuum packaging includes a middle connecting portion configured to contact a first side of the interconnecting portion and a second opposite side of the interconnecting portion.
Abstract:
An apparatus includes a capacitance touch sensor arrangement configured to have a variable capacitance that varies when a conductive object approaches; and at least one variable impedance sensor configured to have a variable impedance that varies with a sensed parameter; an output node; and at least one switch configured to provide, in a first configuration, an output impedance at the output node that depends upon the variable capacitance and configured to provide, in a second configuration, an output impedance at the output node that depends upon the variable impedance.