Abstract:
A display apparatus includes a first substrate, a plurality of microelectromechanical systems (MEMS) light modulators formed from a structural material coupled to the first substrate and a second substrate separated from the first substrate. A plurality of spacers extend from the first substrate to keep the second substrate a minimum distance away from the plurality of light modulators. The spacers include a first polymer layer having a surface in contact with the first substrate, a second polymer layer encapsulating the first polymer layer and a layer of the structural material encapsulating the second polymer layer. The spacers can be used as fluid barriers and configured to surround more than one but less than all of the MEMS light modulators in the display apparatus.
Abstract:
This disclosure provides systems, methods and apparatus for an electromechanical systems (EMS) assembly. The EMS assembly includes a substrate, an anchor disposed on the substrate, and a suspended planar body supported over the substrate by the anchor. The suspended planar body includes at least one depression extending out of a plane of the suspended planar body and protruding towards the substrate. The suspended planar body also includes a substantially horizontal portion corresponding to a gap in the at least one depression. An extent of the gap is up to 20% of a length of the suspended planar body.
Abstract:
A display apparatus includes a first substrate, a plurality of microelectromechanical systems (MEMS) light modulators formed from a structural material coupled to the first substrate and a second substrate separated from the first substrate. A plurality of spacers extend from the first substrate to keep the second substrate a minimum distance away from the plurality of light modulators. The spacers include a first polymer layer having a surface in contact with the first substrate, a second polymer layer encapsulating the first polymer layer and a layer of the structural material encapsulating the second polymer layer. The spacers can be used as fluid barriers and configured to surround more than one but less than all of the MEMS light modulators in the display apparatus.
Abstract:
This disclosure provides systems, methods and apparatus for a display including a fluid-filled cavity. The display can include a plurality of light modulators, and a viewable portion and a non-viewable portion. A bubble generator can be positioned within the non-viewable portion of the cavity and arranged to form a bubble within the non-viewable portion. The non-viewable portion of the display may include a region in which a bubble or bubbles are generated and allowed to move. The display may include a controller arranged to control the operation of the bubble generator. The display also may include a temperature sensor or pressure sensor arranged to measure the temperature or pressure of the display apparatus. The controller may control the operation of the bubble generator in response to a signal from either the temperature sensor, pressure sensor, or both.
Abstract:
This disclosure provides systems, methods and apparatus for electromechanical systems having sidewalls beams. In one aspect, a device includes a substrate having a first electrode and a second electrode, and a movable shuttle monolithically integrated with the substrate, and having a first wall, a second wall, and a base. The first and second walls each have a first dimension at least four times larger than a second dimension. The first and second walls define substantially parallel vertical sides of the shuttle, and the base is positioned orthogonally to the first and second walls and forms a horizontal bottom of the shuttle, providing structural support to the first and second walls. The first wall and the first electrode define a first capacitor, and the second wall and the second electrode define a second capacitor.
Abstract:
This disclosure provides systems, methods and apparatus for a multi-state shutter assembly. The multi-state shutter assembly can be used in an electronic display. The shutter assembly can include a movable light obstructing component. The shutter assembly also can include first and second actuators configured to move the light obstructing component between three states, including a fully light obstructive state, a substantially transmissive state, and a partially transmissive state. At least one of the three states is a neutral state in which both the first and second actuators are in an unactuated state. The shutter assembly also can include a controller configured to control the first and second actuator to selectively move the light obstructing component into each of the three states.
Abstract:
An electromechanical device includes a movable body that is movable along an axis of a direction of motion. The device also includes an actuator beam and a compliant support beam arranged to support the movable body. The compliant support beam includes a first end connected to an anchor and an actuating portion extending from the anchor and in a direction that is transverse to the axis of the direction of motion and away from the anchor. The actuating portion is also arranged adjacently and spaced apart from the actuator beam. The compliant support beam also includes a connector portion that is contiguous with the actuating portion and coupled to the movable body. The connector portion extends at least partially back toward the anchor while being arranged adjacently and spaced apart from the actuating portion.
Abstract:
This disclosure provides systems, methods and apparatus for providing relatively thinner and less stiff compliant beams for a shutter assembly. A protective coating is deposited and patterned over the shutter assembly before it is released from a sacrificial mold over which the shutter assembly is formed. Because some primary surfaces of the compliant beams are in contact with the sacrificial mold, these primary surfaces are not coated with the protective coating. Therefore, when the shutter assembly is finally released, the resulting compliant beams are relatively thinner and less stiff providing a reduction in an actuation voltage used to operate the shutter assembly. In some instances, the protective coating is patterned into discontinuous segments before release.
Abstract:
This disclosure provides systems, methods and apparatus for enabling a display to have a faster switching rate and an increased aperture ratio by using looped electrical interconnects with a reduced footprint. In one aspect, a display apparatus includes an array of display elements and a high-aspect ratio electrical interconnect connected to at least one display element in the array of display elements, wherein the high-aspect ratio electrical interconnect forms a loop that defines a closed boundary.
Abstract:
This disclosure provides display-related systems, methods, and apparatus. A display apparatus can include an array of display elements and an address-selector architecture for addressing and loading data into the array of display elements. The address-selector architecture can include a plurality of bank drive interconnects that can provide write enable voltages. Each of a plurality of scan-line interconnects, where each scan-line interconnect is coupled to one row of display elements, is selectively electrically connected to one bank drive interconnect via a transistor. The scan-line interconnects and their corresponding transistors are grouped into a number of row-banks, where the row-banks can include unequal number of scan-line interconnects. The gate terminals of the transistors in each row-bank are connected to a bank-control interconnect. A bank control interconnect driver provides voltages to the bank-control interconnects for selectively turning the transistors in each bank ON and OFF.