Abstract:
Process for manufacturing a multi-drain power electronic device (30) integrated on a semiconductor substrate (100) of a first type of conductivity whereon a drain semiconductor layer (20) is formed, characterised in that it comprises the following steps: forming at least a first semiconductor epitaxial layer (21) of the first type of conductivity forming the drain epitaxial layer (20) on the semiconductor substrate (100) , forming first sub-regions (51) of a second type of conductivity by means of a first selective implant step forming second sub-regions (Dl, DIa) of the first type of conductivity by means of a second implant step forming a surface semiconductor layer (23) wherein body regions (40) of the second type of conductivity are formed being aligned with the first sub-regions (51) , carrying out a thermal diffusion process so that the first sub-regions (51) form a single electrically continuous column region (50) being aligned and in electric contact with the body regions (40).
Abstract:
Process for manufacturing a power electronic device (30) comprising the following steps: forming a first semiconductor layer (21) of the first type of conductivity forming at least a second semiconductor layer (22) of a second type of conductivity value on the first semiconductor layer (21), forming, in this at least a second semiconductor layer (22), a first plurality of implanted regions (D1) of the first type of conductivity forming, above said at least a second semiconductor layer (22), a superficial semiconductor layer (26) of the first type of conductivity, forming in the surface semiconductor layer (26) body regions (40) of the second type of conductivity, the body regions (40) being aligned with portions of semiconductor layer (22) free from the plurality of said at least second implanted regions (D1), carrying out a thermal diffusion step so that the plurality of implanted regions (D1) form a plurality of electrically continuous implanted column regions (D).
Abstract:
An electronic power device (25) is provided with: a substrate (2) of silicon carbide (SiC), having a front surface (2a) and a rear surface (2b), which lie in a horizontal plane (xy) and are opposite to one another along a vertical axis (z), the substrate including an active area (A'), provided in which are a number of doped regions (4), and an edge area (A"), which is not active, distinct from and surrounding the active area (A'); a dielectric region (8a) arranged above the front surface (2a), at least at the edge area (A"); and a passivation layer (20) arranged above the front surface (2a) of the substrate (2), in contact with the dielectric region (8a) in the edge area (A"). The passivation layer (20) comprises at least one anchorage region (22) that extends throughout the thickness of the dielectric region (8a) at the edge area (A"), such as to define a mechanical anchorage for the passivation layer (20).
Abstract:
A merged-PN-Schottky, MPS, diode (30), comprising: an N substrate (3); a N- drift layer (2); a P-doped region (19') in the drift layer (2); an ohmic contact (19") on the P-doped region (19'); a plurality of cells (33) within the P-doped region and being portions of the drift layer where the P-doped region (19') is absent; an anode metallization (8) on the ohmic contact (19") and on said cells (33), to form junction-barrier contacts and Schottky contacts respectively. The P-doped region (19') has a grid-shaped layout separating from one another each cell (33) and defining, together with the cells (33), an active area (14) of the MPS diode (30); each cell (33) has a same geometry among quadrangular, quadrangular with rounded corners and circular; and the ohmic contact (19") extends at the doped region (19') with continuity along the grid-shaped layout.
Abstract:
Process for manufacturing a multi-drain power electronic device (30) integrated on a semiconductor substrate (100) of a first type of conductivity whereon a drain semiconductor layer (20) is formed, characterised in that it comprises the following steps: - forming at least a first semiconductor epitaxial layer (21) of the first type of conductivity of a first value of resistivity (Á 1 ) forming the drain epitaxial layer (20) on the semiconductor substrate (100), - forming first sub-regions (51) of a second type of conductivity by means of a first selective implant step with a first implant dose (¦ 1P ), - forming second sub-regions (D1,D1a) of the first type of conductivity by means of a second implant step with a second implant dose (¦ 1N ), - forming a surface semiconductor layer (23) wherein body regions (40) of the second type of conductivity are formed being aligned with the first sub-regions (51), - carrying out a thermal diffusion process so that the first sub-regions (51) form a single electrically continuous column region (50) being aligned and in electric contact with the body regions (40).
Abstract:
Process for manufacturing a multi-drain power electronic device (30) integrated on a semiconductor substrate (100) of a first type of conductivity, comprising the following steps: forming a first semiconductor layer (21) of the first type of conductivity and of a first resistivity (Á 1 ) value on the semiconductor substrate (100), forming at least a second semiconductor layer (22) of a second type of conductivity of a second resistivity (Á 2 ) value on the first semiconductor layer (21), forming, in this at least a second semiconductor layer (22), a first plurality of implanted regions (D1) of the first type of conductivity by means of a first selective implant step with a first implant dose (¦ 1 ) , forming, above this at least a second semiconductor layer (22), a superficial semiconductor layer (26) of the first type of conductivity of a third resistivity (Á 6 ) value, forming in the surface semiconductor layer (26) body regions (40) of the second type of conductivity, the body regions (40) being aligned with portions of the semiconductor layer (22) free from the plurality of implanted regions (D1), carrying out a thermal diffusion step so that the plurality of implanted regions (D1) form a plurality of electrically continuous implanted column regions (D) along this at least a second semiconductor layer (22), the plurality of column implanted regions (D) delimiting a plurality of column regions (50) of the second type of conductivity aligned with the body regions (40).