Abstract:
Provided is a landless multilayer circuit board and a manufacturing method thereof. The manufacturing method includes steps of forming a first circuit on a first substrate, patterning a photoresist layer to form at least one via between the first circuit and a second circuit, forming at least one connecting pillar in the at least one via, removing the photoresist layer, forming a second substrate to cover the at least one connect pillar, and forming the second circuit on the second substrate. The second circuit is connected to the first circuit through the at least one connecting pillar. When the second circuit is formed, the at least one via does not need to be filled, thereby making the second circuit flat.
Abstract:
A multi-layer circuit board includes a first circuit board, conducting blocks, a second circuit board, and conducting recesses. The first circuit board has a first conductor layer mounted on the first circuit board. The conducting blocks are mounted on the first circuit board and electrically connected to the first conductor layer. The second circuit board has a second conductor layer mounted thereon and facing the first circuit board. The conducting recesses are formed in the second circuit board, electrically connected to the second conductor layer, and corresponding to the respective conducting blocks. The insulating layer is mounted between the first conductor layer and the second conductor layer. The second circuit board is on the first circuit board, the conducting blocks are respectively mounted in the conducting recesses to electrically connect the first conductor layer and the second conductor layer.
Abstract:
An EMI shielding device is provided. A first shielding layer is formed on a first surface of a first substrate, and a first through hole is formed through the first substrate. A second substrate is mounted in an opening of the first through hole, and a second shielding layer is formed on a surface of the second substrate. A conductive paste is mounted between the first substrate and the at least one second substrate to electrically connected the first shielding layer and the second shielding layer. A protective layer, an antirust layer, and a shielding layer are sequentially mounted on the conductive paste. The EMI shielding device is mounted on a printed circuit board (PCB) by Surface Mount Technology. Therefore, the EMI shielding device may be firmly mounted on the PCB, and there is not any narrow gap that may leak electromagnetic radiation.
Abstract:
A multi-layer circuit board includes a first circuit board, multiple conducting blocks, a second circuit board, and multiple conducting recesses. The first circuit board has a first conductor layer formed thereon. The conducting blocks are mounted on the first circuit board and electrically connected to the first conductor layer. The second circuit board has a second conductor layer mounted thereon and facing the first circuit board. The conducting recesses are formed in the surface of the second circuit board. Each conducting recess has a conducting layer electrically connected to the second conductor layer. When the conducting blocks are mounted in the conducting recesses, the first conductor layer and the second conductor layer are electrically connected through the conducting blocks and the conducting recesses. As can be separated from the first circuit board for test of the two conductor layers, the yield of the second circuit board is enhanced.
Abstract:
Provided is a double layer circuit board and a manufacturing method thereof. The double layer circuit board comprises a substrate, a first circuit layer formed on a first surface of the substrate, a second circuit layer formed on a second surface of the substrate, and at least one connecting pillar formed in and covered by the substrate. Each one of the at least one connecting pillar includes a first end connected to the first circuit layer and a second end connected to the second circuit layer. A terminal area of the second end is greater than a terminal area of the first end. Therefore, the second circuit layer is firmly connected to the first circuit layer through the at least one connecting pillar. A yield rate of the double layer circuit board may be increased.
Abstract:
A buildup board structure incorporating magnetic induction coils and flexible boards is disclosed. The buildup board structure includes at least one first, second and third buildup bodies modular and stackable. Any two adjacent buildup bodies are separated by a covering layer provided with a central hole for electrical insulation. All central holes are aligned. Each buildup body includes a plurality of flexible boards, and each flexible board is embedded with a plurality of magnetic induction coils surrounding the corresponding central hole and connected through connection pads. The first, second and third buildup bodies are easily laminated in any order by any number as desired such that the effect of magnetic induction provided by the magnetic induction coils embedded in the buildup board structure are addable to greatly enhance the overall effect of magnetic induction.
Abstract:
A winged coil structure and a method of manufacturing the same are disclosed. The winged coil structure includes an upper flexible plate, at least one upper magnetic induction coil, at least one upper connection pad, a lower flexible plate, at least one lower magnetic induction coil, at least one lower connection pad, at least one gold finger, a dielectric layer and at least one connection plug. The connection plug connects the upper connection pad and the lower connection pad through thermal pressing such that the gold finger, the upper magnetic induction coil, the upper connection pad, the lower connection pad, the connection plug, the lower connection pad and the lower magnetic induction coil are electrically connected. The upper flexible plate is provided with notched lines to be easily bent without damage to the upper and lower magnetic induction coils. Thus, a bendable feature for magnetic induction coils is provided.
Abstract:
Disclosed is a method for manufacturing a circuit board, including preparing a substrate having a resin layer and a stop layer, forming at least one conduction hole penetrating the resin layer and stopping at the stop layer, forming a first metal layer through a sputtering process, forming a second metal layer on the first metal layer through a chemical plating process, forming a third metal layer having a circuit pattern, exposing part of the second metal layer and filling up the conduction hole through an electroplating process, and etching the second metal layer and the first metal layer under the second metal layer to expose the resin layer under the first metal layer. Since the first metal layer provides excellent surface properties, the second and third metal layers are well fixed and stable. The etched circuit pattern has a line width/pitch less than 10 μm for fine line width/pitch.
Abstract:
Disclosed is a circuit board structure, including the first, second and third metal layers sequentially stacked on the substrate from bottom to top and formed by the sputtering process, the chemical plating process and the electroplating process, respectively. The substrate includes the stop layer and the resin layer stacked on the stop layer. The stop layer includes a pattern having at least one contact region, which is not covered by the resin layer. The first, second and third metal layers have an etched circuit pattern, respectively, and each of the etched circuit patterns is provided out of the corresponding contact region and aligned to each other to expose part of the resin layer. The etched circuit pattern is used for electrical connection. Since the first metal layer provides excellent surface properties, the second and third metal layers are well fixed and more stable.
Abstract:
A method for manufacturing a circuit board with a buried element having high density pin count, wherein a micro copper window formed in a first circuit by patterned dry film electroplating is easily controlled less than 50 μm so that the micro conduction holes formed after the laser drilling each has a diameter greatly shrunk less than 50 μm so as to highly increase density of the micro conduction holes, thereby facilitating in burial of the buried element with the high density pin count. Additionally, by disposing the micro conduction holes in the same elevation, optically aligning a fixing position for the buried element can be controlled precisely.