Abstract:
An optoelectronic module operable to acquire distance data and spectral data includes an array of demodulation pixels and an array of spectral filters. The demodulation pixels can possess an intrinsic wavelength-dependent sensitivity, wherein the intrinsic wavelength-dependent sensitivity can be offset by an intensity balancing micro-lens array in some cases. In some cases, the intrinsic wavelength-dependent sensitivity can be offset by a combined filter array, while in other cases the intrinsic wavelength-dependent sensitivity can be offset by an intensity balancing filter array. Still in other cases, the demodulation pixels can be operable in such as to offset the intrinsic wavelength-dependent sensitivity.
Abstract:
Apparatus and methods for providing an improved Fabry-Perot interferometer (FPI)-based spectrometer are disclosed herein. The improved FPI-based spectrometer may comprise one or more of a variety of improvements to allow improved sensitivity while retaining high spectral resolution, to limit the susceptibility to stray light, and to limit the degradation in performance due to temporal instabilities in the light source.
Abstract:
This is to provide a photometric apparatus improved in measurement precision by improving the state of light incident to a sensor, which photometric apparatus 1 comprises a photometric sensor 30 into which light which is an object to be measured is incident, a signal processing means for processing a sensor output by the photometric sensor, and optical systems 50, 100, 92, 93 and 150 which introduces external light into the photometric sensor, wherein a columnar fiber rod 100 in which a center axis is provided along a direction perpendicular to a light receiving surface of the photometric sensor is provided at a part of the optical system.
Abstract:
A scanner and an attenuated total reflection (ATR) objective for use in such scanners are disclosed The ATR objective includes first and second optical elements and an input port. The input port receives an input collimated light beam that is focused to a point on a planar face of the first optical element by the second optical element such that substantially all of that portion is reflected by the planar face and no portion of the input beam strikes the planar face at an angle greater than the critical angle. The second optical element also generates an output collimated light beam from light reflected from the planar face that is characterized by a central ray that is coincident with the central ray of the input collimated light beam. A light beam converter receives the first collimated light beam and generates the input collimated light beam therefrom.
Abstract:
A spectroscopic measurement device includes a dark filter that is arranged on an optical path between an imaging optical system and a light detection unit and includes a plurality of regions having different transmittances, the filter being configured such that a fixed reflected measurement light and a movable reflected measurement light that are guided to a same point by the imaging optical system and form interference light are transmitted through a same region; and an arithmetic processing unit that obtains an interferogram of the measurement light at a transmittance corresponding to each of two or more regions from a detection signal of each pixel of a light detection unit when a movable reflection unit is moved, and obtains a spectrum of the measurement light based on the interferogram.
Abstract:
A light module for a biochemical analyzing system includes a halogen light source emitting light beams, which are guided through a first light path and a second light path and then combined to go through a first beam splitter, so as to analyze a biochemical sample. The first light path includes a plurality of reflective mirrors and a first filter lens, and the first filter lens is used to attenuate an orange band light of the halogen light source. The second light path includes a second filter lens, and the second filter lens is used to attenuate the lights of the halogen light source except the ultraviolet light band.
Abstract:
A detector system having a single emitter body. The emitter body has a plurality of light emitting diodes (LEDs) for emitting a plurality of wavelengths. Each LED adapted to emit a different wavelength of light. A broadband filter is adapted to receive the plurality of wavelengths. A detector arrangement adapted to receive the plurality of wavelengths filtered by the broadband filter. A controller adapted to control the plurality of LEDs and detector arrangement.
Abstract:
An apparatus for obtaining an image of a tooth having at least one light source providing incident light having a first spectral range for obtaining a reflectance image from the tooth and a second spectral range for exciting a fluorescence image from the tooth. A polarizing beamsplitter in the path of the incident light from both sources directs light having a first polarization state toward the tooth and directs light from the tooth having a second polarization state along a return path toward a sensor, wherein the second polarization state is orthogonal to the first polarization state. A first lens in the return path directs image-bearing light from the tooth toward the sensor, and obtains image data from the portion of the light having the second polarization state. A long-pass filter in the return path attenuates light in the second spectral range.
Abstract:
One embodiment of a Raman spectrometer having a temperature controlled diode laser with Bragg grating optical feedback 100 which provides a means for the acquisition of Raman spectra using sequentially shifted excitations and provides a means for spectral processing to obtain a Raman spectrum which is free from background interference such as fluorescence.
Abstract:
There is provided a spectrometric optical system, comprising a reflection member having a concave surface formed along a first circle, a diffraction grating having an edge part and a convex surface formed along a second circle disposed concentrically with the first circle, on which the light reflected at the concave surface of the reflection member is incident, and an input element disposed at a predetermined position to the reflection member and the diffraction grating such that a diffracted light, emitted from the diffraction grating, having a wavelength region of not less than 600 nm to not more than 1100 nm, and reflected at the concave surface, passes between the input light input to the spectrometric optical system and the edge part of the diffraction grating.