Abstract:
An electronic component, which is surface-mounted on a wiring board by soldering, and in which the occurrence of cracks in the solder after surface-mounting is suppressed, may include: a member constituting at least part of a container and made of ceramic; and an external terminal provided on the outer surface of the member and used in surface-mounting the electronic component on the wiring board by solder. The film thickness of a layer constituting the external terminal is designed so that when the thermal expansion coefficient of the ceramic constituting the member is α1, combined expansion coefficient αk of the member and the external terminal satisfies a relation of 1.029≦αk/α1≦1.216. The external terminal preferably comprises a nickel layer as an electrode body.
Abstract:
A lead wire led-out type crystal oscillator of constant temperature type for high stability is disclosed, which includes a heat supply body that supplies heat to a crystal resonator from which a plurality of lead wires are led out, to maintain the temperature constant. The heat supply body includes a heat conducting plate which has through-holes for the lead wires and is mounted on the circuit board, and which faces, and is directly thermally joined to, the crystal resonator and a chip resistor for heating which is mounted on the circuit board adjacent to the heat conducting plate, and is thermally joined to the heat conducting plate.
Abstract:
An electronic component, which is surface-mounted on a wiring board by soldering, and in which the occurrence of cracks in the solder after surface-mounting is suppressed, may include: a member constituting at least part of a container and made of ceramic; and an external terminal provided on the outer surface of the member and used in surface-mounting the electronic component on the wiring board by solder. The film thickness of a layer constituting the external terminal is designed so that when the thermal expansion coefficient of the ceramic constituting the member is α1, combined expansion coefficient αk of the member and the external terminal satisfies a relation of 1.029≦αk/α1≦1.216. The external terminal preferably comprises a nickel layer as an electrode body.
Abstract:
A ball grid array resonator for use as, for example, a high “Q” inductive element in the tank circuit of a voltage controlled oscillator. The resonator comprises a ceramic substrate including opposed top and bottom surfaces, each having a continuous strip of conductive material formed thereon and, in one embodiment, at least two conductive vias which extend through the substrate and electrically interconnect the respective strips of conductive material to define a continuous and elongate path or transmission line for an RF signal. The respective strips of conductive material may be spiral-shaped, hook-shaped, serpentine-shaped, or otherwise suitably shaped depending upon the desired application. Conductive balls/spheres on the bottom surface define RF signal input/output pads and ground pads adapted for electrical connection to the printed circuit board or substrate of, for example, a voltage controlled oscillator.
Abstract:
A resonator/filter adapted for direct surface mounting to the surface of a printed circuit board. The resonator/filter comprises a block of dielectric material including at least one resonator through-hole extending therethrough and respective top, bottom and side surfaces defining respective regions of dielectric material covered with conductive material. The top block surface defines at least a first conductive region. A second conductive region on the bottom surface of the block defines an input/output contact which allows the filter to be mounted on the board with the bottom filter surface seated thereon, thus providing a direct ground contact between the board and the resonator through-hole for improved attenuation performance particularly at higher frequencies. A plurality of transmission line embodiments electrically interconnect the first and second conductive regions.
Abstract:
To provide a highly stable crystal oscillator having increased thermal efficiency. The highly stable crystal oscillator comprises; a thermostat mainframe which maintains the temperature of a crystal resonator including a resonator container for sealing a crystal piece constant, an oscillating element which constitutes an oscillation circuit together with said crystal resonator, a temperature control element which controls the temperature inside of said thermostat mainframe, and a circuit board mounted with said thermostat mainframe, said oscillating element, and said temperature control element. The construction is such that a heat generating chip resistor and a highly heat sensitive element having a higher temperature dependency, among said oscillating element and said temperature control element, are arranged on one principal plane of said circuit board, and said heat generating chip resistor, said highly heat sensitive element, and said thermostat mainframe are directly heat bonded by a thermo-conductive material.
Abstract:
An electronic part comprising: a printed circuit board including a first major surface and a second major surface; a circuit element disposed on the first major surface of the printed circuit board; a terminal electrode disposed on the second major surface of the printed circuit board and including a major surface opposed to the second major surface of the printed circuit board; a soldering-resistant film disposed on the second major surface of the printed circuit board and including a major surface opposed to the second major surface of the printed circuit board; wherein the distance between the major surface of the terminal electrode and the second major surface of the printed circuit board is substantially equal to or larger than the distance between the major surface of the soldering-resistant film in the vicinity of the terminal electrode and the second major surface of the printed circuit board.
Abstract:
An apparatus and method for manufacturing substrate elements includes providing a mother substrate, and forming a plurality of through-holes on first lines and second lines opposing each other across sections on the mother substrate. The sections define each of the substrate elements to be formed. The through-holes on the first lines are disposed alternately with respect to the through-holes on the second lines. Electrodes are also provided on the principal plane of the mother substrate and on the inner surfaces of the through-holes. Then, the mother substrate is cut along cut lines in the vertical and horizontal directions.
Abstract:
A dielectric resonator device includes a dielectric member, inner conductors provided in the dielectric member, an outer conductor formed on an outer surface of the dielectric member, signal input and output electrodes formed on the outer surface of the dielectric member opposing a mounting substrate and coupled with the inner conductors, and solder bumps formed on the outer conductor on its surface opposing the mounting substrate and on the signal input and output electrodes. By heating the dielectric resonator device opposing the mounting substrate, electrical and mechanical connections may be made therebetween through the solder bumps, while preventing the formation of solder bridges.