Abstract:
A battery module including bus bar cell interconnects and a method of manufacture are provided. The battery module may, in certain embodiments, include a housing, a plurality of battery cells disposed in the housing, and a bus bar cell interconnect. The bus bar cell interconnect is designed to electrically couple a first battery cell and a second battery cell. In some embodiments, the bus bar cell interconnect includes a first end electrically coupled with a first terminal of the first battery cell and a second end electrically coupled with a second terminal of the second battery cell. The bus bar cell interconnect also includes a curved portion disposed between the first end and the second end, and the bus bar cell interconnect is designed to distribute stress across the curved portion.
Abstract:
A battery module (22) and a method of manufacture are provided. The battery module (22) may include a printed circuit board (PCB) assembly (58). The PCB assembly (58) may include a PCB (136) designed to be disposed in a battery module (22) for controlling operations of the battery module (22). The PCB (136) may also include voltage sensing circuitry. In addition, the PCB (136) assembly may include a bus bar cell interconnect (222). The bus bar cell interconnect (222) may electrically couple batteries (54) of the battery module (22). The PCB assembly (58) may also include a voltage sense connection tab (226). The voltage sense connection tab (226) may carry a voltage between a bus bar cell interconnect (22) of the battery module (22) and the voltage sensing circuitry on the PCB (58).
Abstract:
A system and method are disclosed in which flex cables are affixed to PCBs, for providing high-speed signaling paths between ICs disposed upon the PCBs. The flex cables are fixably attached to the PCBs so as to substantially mimic their structural orientation. Where the configuration includes more than one PCB, the flex cables include multiple portions which are temporarily separable from one another and from the die, using flex-to-flex and flex-to-package connectors, allowing field maintenance of the configuration. By routing the high-speed signals between ICs onto the flex cable, single-layer PCBs can be used for non-critical and power delivery signals, at substantial cost savings. By disposing the flex cables onto the PCB rather than allowing the cables to float freely, the configuration is thermally managed as if the signals were on the PCB and cable routing problems are avoided.
Abstract:
A printed circuit board arrangement, is provided having a first printed circuit board with at least two first contact elements fastened thereto and protruding vertically therefrom, a second printed circuit board with at least two second contact elements fastened thereto, protruding vertically therefrom and corresponding to the first contact elements, and a plastics housing which is mounted on the first printed circuit board and in which the first contact elements are held with a form fit and the second contact elements are mounted displaceably.
Abstract:
A battery module may include a housing, a plurality of battery cells disposed in the housing, a battery terminal extending from the battery module for coupling the battery module with electrical components in the vehicle, and a contactor. A voltage supplied to a relay coil in the contactor may generate a magnetic field to actuate a contactor switch. The battery module may also include a printed circuit board (PCB) disposed in the housing. The PCB may include a relay control circuit configured to control a current flowing across the relay coil, and the relay control circuit may operate in a pull-in mode to transition the contactor switch into a closed position and in a hold mode to maintain the contactor switch in the closed position.
Abstract:
A system includes a lid disposed over battery cells in a battery module. The lid includes flexible fingers, and each of the flexible fingers aligns with a corresponding one of the battery cells. Each of the flexible fingers is configured to exert a downward force against the corresponding one of the battery cells, and the flexible fingers are configured to accommodate varying heights of the battery cells.
Abstract:
A terminal for a battery module and a method of manufacture of the terminal are provided. The battery module may include a plurality of battery cells and a bus bar. The bus bar may be electrically coupled to the plurality of battery cells. The battery module also may include a battery terminal that carries a voltage from the bus bar. The battery terminal may include a generally cylindrical terminal portion and a connector. The connector may be coupled to the bus bar cell interconnect. The battery terminal also may include a bent portion. The bent portion is disposed between the terminal portion and the connector.
Abstract:
A method and apparatus are provided in which a cavity is formed in a support structure, the support structure being operable to support a semiconductor device, disposing at least a portion of a circuit element in the cavity in the support structure, filling the cavity in the support structure with an electrically non-conductive filling material so as to at least partially surround the circuit element with the non-conductive filling material, and electrically connecting the semiconductor device to the circuit element. In an example embodiment, the circuit element is operable to substantially block direct current that is output by the semiconductor device or another semiconductor device.
Abstract:
A lamp includes an LED module, a drive unit supplying power to the LED module, and a base via which power is fed from an external power supply to the drive unit. The drive unit is located between the LED module and the base. The drive unit includes a circuit board having a main surface on which lead-type electronic components are mounted, lead wires (first lead wires) extending from the main surface of the circuit board and connected to the LED module, and lead wires (second lead wires) extending from the main surface of the circuit board and connected to the base. The circuit board has a through-hole extending from the main surface to an opposite surface thereof. The lead wires pass through the through-hole.
Abstract:
A battery module and a method of manufacture are provided. The battery module may include a printed circuit board (PCB) assembly. The PCB assembly may include a PCB designed to be disposed in a battery module for controlling operations of the battery module. The PCB may also include voltage sensing circuitry. In addition, the PCB assembly may include a bus bar cell interconnect. The bus bar cell interconnect may electrically couple batteries of the battery module. The PCB assembly may also include a voltage sense connection tab. The voltage sense connection tab may carry a voltage between a bus bar cell interconnect of the battery module and the voltage sensing circuitry on the PCB.