Abstract:
A reflow mounting method and a semiconductor device for efficient manufacture of TCPs superior in reliability by preventing the deformation of leads and ensuring a dependable contact between the bonding pads on a circuit board and the leads, wherein metal pieces arranged as weights on the leads are temporarily positioned adequately to specified bonding pads, thus restraining the leads from shifting from appropriate positions, which may occur if the leads deform, and wherein the metal pieces become wettable by bonding agent when heated, thus making sure that the leads are firmly fixed between the metal pieces and the bonding pads.
Abstract:
A hybrid integrated circuit device having a conductor foil pattern connected to a connector lead with increased mechanical strength. A heat conduction suppressing element, such as an opening, is located in the vicinity of a soldered bond to the conductor foil pattern of a metallic circuit substrate having a high thermal conductivity and a connector lead for reducing heat conduction to the substrate during soldering. The bond formed between the conductor foil pattern and the connector lead has remarkably improved bonding quality and mechanical strength.
Abstract:
A surface mountable miniature incandescent lamp assembly has an elongated substantially cylindrical glass envelope wherein a filament is contained in contact with metal members having glass-to-metal seals with the glass envelope. A substantial portion of the outer surface of the glass envelope is coated with a light reflective metal coating, with a non-coated elongated window transparent to light being left on the surface. The metal members extend axially to the outside from the envelope and, when mounted to a circuit board provide electric contact for the lamp. At least one of the end members includes a unique surface feature, such as a flat portion of an otherwise cylindrical surface, which is directionally coupled relative to the window of the glass envelope and which acts as a key or indexing surface for mounting the lamp assembly to the receiving surface (circuit board) with the window disposed in the desired direction.
Abstract:
A process for transforming a cylindrical electrical part into a component having at least one flat surface, suitable for use as a surface mounted device.
Abstract:
A surface mountable electronic device and method of making same wherein a discrete electronic device is encapsulated in a body of electrical insulating material having opposite ends and a mounting surface extending between the ends, and an electrode is provided on each end. Each electrode includes a portion on the end of the body in electrical contact with the corresponding lead of the discrete electronic device and a contact portion extending along the mounting surface for making electrical connection to a circuit portion defined on a surface to which the device is mountable. The discrete electronic device is manufactured, prior to encapsulation, by known techniques. Preferably the body is a rectangular solid with each of the four sides having electrode contact portions thereon to serve as one of four possible mounting surfaces each with substantial mechanical stability. When the discrete electronic device is an inductor, interruption of the magnetic field is minimized by spacing the ends of the inductor core from the ends of the encapsulating body, separating the electrode contact portions, having the area of the electrode end portion less than the area of the end of the encapsulating body, and having the cross-sectional area of the most narrow section of the electrode end portion no less than the cross sectional area of the magnetic wire of the inductor winding. For a shielded inductor, phenolic core inductor or non-inductive device, solid metal end electrodes can be employed.
Abstract:
An electric capacitor which can be soldered to a printed circuit board in the manner of a chip component, without damaging the capacitor, has capacitor plates with electrodes therebetween arranged in a stack, the electrodes alternatingly terminating at opposite end faces of the capacitor, at which a metal plating is applied, with a portion of respective bands of flexible metal being disposed adjacent each metal plating forming current leads, with the portion of the band adjacent the metal plating being encapsulated with the capacitor, and a remaining portion of each band projecting outside of the encapsulation and being bent at least partially around exterior sides of the encapsulation and forming soldering surfaces. A method for manufacturing such a capacitor includes the steps of cutting spaced recesses in a metal plate for producing a number of continuous parallel bands extending between two margins of the plate, cutting and bending those bands and inserting a stacked capacitor with the metal platings between the cut ends of the band, encapsulating the capacitor and the portions of the bands adjacent thereto, and severing the opposite ends of the bands from the plate margins and bending the severed portions around a part of the exterior of the encapsulation.
Abstract:
A planar terminated capacitor and a method for fabricating planar terminated capacitors is disclosed wherein a capacitor element is inserted in a nonconductive ceramic case. The case extends outwardly beyond the ends of the capacitor element forming cavities at each end of the case. Metal end caps are positioned at the ends of the case substantially enclosing the cavities. The end caps are electrically coupled to the ends of the capacitor element.
Abstract:
A planar terminated capacitor and a method for fabricating planar terminated capacitors is disclosed wherein a capacitor element is inserted in a nonconductive tubular sleeve. The sleeve extends outwardly beyond the ends of the capacitor element forming cavities at each end of the sleeve. These cavities are filled with a conductive substance and metal end caps are positioned at the ends of the sleeve substantially enclosing the cavities. The conductive substance electrically couples the end caps to the ends of the capacitor element.
Abstract:
The lead of a T03 style transistor extends through a hole in a printed circuit board. A resilient connector is provided for connecting the transistor lead to a printed circuit conductor in a manner to allow dip soldering but avoiding stress on the lead which might break the glass seal on the transistor package. The connector is a spring clip having a U-shaped portion with a pair of aligned holes in the legs to grip the transistor lead, one of the legs extending into another U-shaped portion which resiliently engages the circuit board conductor when assembled to the transistor lead. The connections are secured by dip soldering to complete the assembly.