Abstract:
An epitaxial layer (3, 5) is deposited on a substrate (1) with adjacently grown mono- and poly-crystalline silicon. A region (5, 6) is exposed as a vertically displaceable polycrystalline membrane, in particular for a pressure sensor, by means of etching. The poly/mono transition regions to both sides of the membrane each have an inclined profile such that the mono-crystalline silicon extends over the polycrystalline silicon in the form of a overhang (6) in the membrane region (5, 6). Piezoelements (10) are implanted in the overhang (6).
Abstract:
A method for fabricating a trilayered beam MEMS device includes depositing a sacrificial layer (310) on a substrate and depositing and removing a portion of a first conductive layer on the sacrificial layer (310) to form a first conductive microstructure (312); depositing a structural layer (322) on the first conductive microstructure (312); the sacrificial layer (310), and the substrate (300) and forming a via through the structural layer (322) to the first conductive microstructure (312); depositing a second conductive layer (336) on the structural layer (322) and in the via; forming a second conductive microstructure (324) by removing a portion of the second conductive layer (336), wherein the second conductive microstructure (324) electrically communicates with the first conductive microstructure (312) through the via; and removing a sufficient amount of the sacrificial layer (310) so as to separate the first conductive microstructure (312) from the substrate, wherein the structural layer (322) is supported by the substrate at a first end is freely suspended above the substrate at an opposing second end.
Abstract:
A movable, trilayered microcomponent (108) suspended over a substrate (102) is provided and includes a first electrically conductive layer (116) patterned to define a movable electrode (114). The first metal layer (116) is separated from the substrate (102) by a gap. The microcomponent (108) further includes a dielectric layer formed (112) on the first metal layer (116) and having an end fixed with respect to the substrate (102). Furthermore, the microcomponent (102) includes a second electrically conductive layer (120) formed on the dielectric layer (112) and patterned to define an electrode interconnect (124) for electrically communicating with the movable electrode (114).
Abstract:
상품, 리드-프레임 패키징이 이용될 수 있도록, 웨이퍼 형태인 경우 MEMS 장치의 가동부는 캡슐화되고 보호된다. 에폭시시클로헥실 다면체 올리고머 실세스퀴옥산(EPOSS)과 같은 오버코트 중합체는 희생 중합체를 패터닝할 뿐만 아니라 에어-캐비티를 오버코트하는 마스크 물질로서 이용되었다. 결과의 에어-캐비티는 깨끗하고, 데브리-프리(debris-free)이며 단단하다. 상기 캐비티는 MEMS 장치의 리드-프레임 패키징 동안 성형 압력을 견딜 수 있는 실질적 강도를 가진다. 20 pm × 400 pm 내지 300 ㎛ × 400 um 의 광범위한 캐비티가 제조되었고, 기계적으로 안정한 것으로 나타났다. 이들은 광범위한 크기로 MEMS 장치를 잠재적으로 수용할 수 있다. 상기 캐비티의 강도는 나노-압흔을 이용하여 조사되었고, 분석적 및 유한 요소 기법을 이용하여 모델링되었다. 이런 프로토콜을 이용하여 패키지된 용량성 공진기는 깨끗한 감지 전극 및 우수한 기능성을 나타냈다.
Abstract:
A three-dimensional structure element having a plurality of three-dimensional structural bodies and capable of being uniformly formed without producing a dispersion in shape of the three-dimensional structural bodies, comprising a substrate (11) and the three-dimensional structural bodies (1) disposed in a predetermined effective area (20) on the substrate (11), the three-dimensional structural bodies (1) further comprising space parts formed in the clearances thereof from the substrate (11) by removing sacrificing layers, the substrate (11) further comprising a dummy area (21) having dummy structural bodies (33) so as to surround the effective area (20), the dummy structural body (33) further comprising space parts formed in the clearances thereof from the substrate (11) by removing the sacrificing layers, whereby since the dummy area (21) is heated merely to approx. the same temperature as the effective area (20) in an ashing process for removing the sacrificing layers to prevent a temperature distribution from occurring in the effective area (20).
Abstract:
본 발명은 미세 구조물 제조방법에 관한 것으로서, 더욱 상세하게는 초소형 정밀기계(Micro Electro Mechanical System, MEMS)의 구조물 제조방법에 있어서, 실리콘 기판위에 희생층 물질을 도포하여 패터닝(patterning)하고, 상기 희생층 물질과 동일한 물질의 포스트를 형성하는 공정을 포함하는 제조방법을 제공함으로써, 미세 구조물 제조 시 점착을 미연에 방지하며, 1번의 공정만을 추가하여 간편하게 포스트를 제조할 수 있고, 희생층 물질로 포토레지스트를 사용하기 때문에 원하는 형태의 희생층을 쉽게 제작할 수 있는 등의 효과가 있다. 미세 구조물, 초소형 정밀기계(Micro Electro Mechanical System, MEMS), 포스트(post), 포토레지스트