Abstract:
The present disclosure relates to the field of sensor manufacturing technology, particularly discloses a method for manufacturing a micro-sensor body, comprising the steps of S1: applying a wet colloidal material on a substrate to form a colloidal layer, and covering a layer of one-dimensional nanowire film on the surface of the colloidal layer to form a sensor embryo; S2: drying the colloidal layer of the sensor embryo to an extent that the colloidal layer cracks into a plurality of colloidal islands, a portion of the one-dimensional nanowire film contracting into a contraction diaphragm adhered to the surface of the colloidal islands while the other portion of the one-dimensional nanowire film being stretched into a connection structure connected between the adjacent contraction diaphragms. By the method for manufacturing a micro-sensor body of the present disclosure, the contraction diaphragms and connection structures formed by stretching the one-dimensional nanowire film are connected stably, which enhances the stability of the sensor devices; and the cracking manner renders it easy to obtain a large-scale of sensor bodies with connection structure arrays in stable suspension.
Abstract:
A method for forming a MEMS structure includes forming, on a MEMS substrate, an interconnect structure having conductive lines and a first conductive plug of a semiconductor material, forming an etch stop layer on the interconnect structure, forming a dielectric layer over the etch stop layer, bonding a silicon substrate over the dielectric layer, forming a second and third conductive plugs of the semiconductor material in the silicon substrate, wherein the second conductive plug is configured to be electrically coupled with the first conductive plug and third conductive plug is configured to function as an anti-stiction bump, forming a MEMS device electrically coupled with the second conductive feature, and forming a bonding pad on the silicon substrate and surrounded by the second conductive plug.
Abstract:
A MEMS anti-phase vibratory gyroscope includes two measurement masses with a top cap and a bottom cap each coupled with a respective measurement mass. The measurement masses are oppositely coupled with each other in the vertical direction. Each measurement mass includes an outer frame, an inner frame located within the outer frame, and a mass located within the inner frame. The two measurement masses are coupled with each other through the outer frame. The inner frame is coupled with the outer frame by a plurality of first elastic beams. The mass is coupled with the inner frame by a plurality of second elastic beams. A comb coupling structure is provided along opposite sides of the outer frame and the inner frame. The two masses vibrate toward the opposite direction, and the comb coupling structure measures the angular velocity of rotation.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes forming a Micro-Electro-Mechanical System (MEMS) beam structure by venting both tungsten material and silicon material above and below the MEMS beam to form an upper cavity above the MEMS beam and a lower cavity structure below the MEMS beam.
Abstract:
A MEMS anti-phase vibratory gyroscope includes two measurement masses with a top cap and a bottom cap each coupled with a respective measurement mass. The measurement masses are oppositely coupled with each other in the vertical direction. Each measurement mass includes an outer frame, an inner frame located within the outer frame, and a mass located within the inner frame. The two measurement masses are coupled with each other through the outer frame. The inner frame is coupled with the outer frame by a plurality of first elastic beams. The mass is coupled with the inner frame by a plurality of second elastic beams. A comb coupling structure is provided along opposite sides of the outer frame and the inner frame. The two masses vibrate toward the opposite direction, and the comb coupling structure measures the angular velocity of rotation.
Abstract:
The present invention generally relates to a method for forming a MEMS device and a MEMS device formed by the method. When forming the MEMS device, sacrificial material is deposited around the switching element within the cavity body. The sacrificial material is eventually removed to free the switching element in the cavity. The switching element has a thin dielectric layer thereover to prevent etchant interaction with the conductive material of the switching element. During fabrication, the dielectric layer is deposited over the sacrificial material. To ensure good adhesion between the dielectric layer and the sacrificial material, a silicon rich silicon oxide layer is deposited onto the sacrificial material before depositing the dielectric layer thereon.
Abstract:
A producing method for a diaphragm-type resonant MEMS device includes forming a first silicon oxide film, forming a second silicon oxide film, forming a lower electrode, forming a piezoelectric film, forming an upper electrode, laminating the first silicon oxide film, the second silicon oxide film, the lower electrode, the piezoelectric film, and the upper electrode in this order on a first surface of a silicon substrate, and etching the opposite side surface of the first surface of the silicon substrate by deep reactive ion etching to form a diaphragm structure, in which the proportion R2 of the film thickness t2 of the second silicon oxide film with respect to the sum of the film thickness t1 of the first silicon oxide film and the film thickness t2 of the second silicon oxide film satisfies the following condition: 0.10 μm≦t1≦2.00 μm; and R2≧0.70.
Abstract:
Micro-Electro-Mechanical System (MEMS) structures, methods of manufacture and design structures are disclosed. The method includes forming a Micro-Electro-Mechanical System (MEMS) beam structure by venting both tungsten material and silicon material above and below the MEMS beam to form an upper cavity above the MEMS beam and a lower cavity structure below the MEMS beam.
Abstract:
There are many inventions described and illustrated herein. In one aspect, the present invention is directed to a MEMS device, and technique of fabricating or manufacturing a MEMS device, having mechanical structures encapsulated in a chamber prior to final packaging. The material that encapsulates the mechanical structures, when deposited, includes one or more of the following attributes: low tensile stress, good step coverage, maintains its integrity when subjected to subsequent processing, does not significantly and/or adversely impact the performance characteristics of the mechanical structures in the chamber (if coated with the material during deposition), and/or facilitates integration with high-performance integrated circuits. In one embodiment, the material that encapsulates the mechanical structures is, for example, silicon (polycrystalline, amorphous or porous, whether doped or undoped), silicon carbide, silicon-germanium, germanium, or gallium-arsenide.
Abstract:
A non-volatile memory device and method of manufacturing a non-volatile micro-electromechanical memory cell. The method comprises the first step of depositing a first layer of sacrificial material on a substrate by use of Atomic Layer Deposition The second step of the method is providing a cantilever (101) over at least a portion of the first layer of sacrificial material. The third step is depositing, by use of Atomic Layer Deposition, a second layer of sacrificial material over the first layer of sacrificial material and over a portion of the cantilever such that a portion of the cantilever is surrounded by sacrificial material. The fourth step is providing a further layer material (107) which covers at least a portion of the second layer of sacrificial material. Finally, the last step is etching away the sacrificial material surrounding the cantilever, thereby defining a cavity (102) in which the cantilever is suspended.