Abstract:
A printed circuit board assembly (10) employing a solder vent hole (32) adjacent solder filled interconnect vias (22) connecting to a conductive pallet (16), is disclosed. The solder vent hole (32) allows gases to escape from an otherwise sealed cavity (24) during solder reflow, relieving positive pressure and thereby allowing solder (26) to flow into it. By providing an escape path for trapped air and gases generated during solder paste reflow, the out-gassing pressure and weight of the molten solder is sufficient to allow the solder paste (26) to flow into the cavity (24).
Abstract:
Es ist eine Leiterplatte (1) angegeben, bei der zwischen der Leiterplatte (1) und einem darauf angeordneten Bauteil (17) eine mechanisch hoch belastbare elektrische und mechanische Verbindung besteht, mit mindestens einer innenliegenden Leiterbahn (3), einer ersten auf einer ersten Oberfläche der Leiterplatte (1) angeordneten Isolationsschicht (5), einer zweiten auf einer zweiten Oberfläche der Leiterplatte (1) angeordneten Isolationsschicht (7), einer ersten Kontaktstelle (9, 31) an der die Leiterbahn (3) zugänglich ist, einer zweiten Kontaktstelle (13), an der die Leiterbahn (3) durch eine die Leiterplatte (1) vollständig durchdringende Bohrung (15) zugänglich ist, und einem auf der ersten Oberfläche angeordneten elektronischen Bauteil (17), das eine erste Kontaktfläche (19) aufweist, die mit der ersten Kontaktstelle (9, 31) durch eine Lötung oder eine Klebung mit einem elektrisch leitfähigen Kleber verbunden ist, und das eine zweite Kontaktfläche (21)aufweist, die mit der zweiten Kontaktstelle (13) durch eine Lötung oder eine Klebung verbunden ist.
Abstract:
L'invention concerne un procédé pour connecter des premiers plots (16) d'une structure (1) proteuse d'electrodes (4) propres à mesurer ou à stimuler une activité d'origine physiologique à des seconds plots (17) d'au moins un circuit aval (2), chaque second plot (17) étant traversé par une ouverture (15) perforant le circuit aval. Le procédé comporte les étapes suivantes : a) placer le circuit aval sur ladite structure, de sorte que l'ouverture (15) d'un second plot (17) se trouve en face d'un premier plot (16); et b) déposer dans l'ouverture (15) du second plot (17) un matériau conducteur (18) assurant la connexion entre le second plot et le premier plot en regard.
Abstract:
A method and device are disclosed for mounting a printed circuit board to another printed circuit board. The device (1) includes a first printed circuit board (2) having a plurality of electrical components (3) disposed thereon, the first printed circuit board (2) including a plurality of wire segments (4) electrically connecting the electrical components (3) together and a plurality of input-output wire segments (5) being routed to side surfaces (2B) of the first printed circuit board (2). The device further includes a plurality of plate members (6) of electrically conductive material disposed along the side surfaces (2B) of the first printed circuit board (2) and associated with the input-output wire segments (5) thereof. A solder bump (8) is disposed against each plate member (6). The first printed circuit board (2) is disposed on a second printed circuit board (B) and maintained thereon by the solder bumps (8), the second printed circuit board (B) providing electrical connectivity to each input-output wire segment (5) of the first printed circuit board (2). Because each solder bump (8)/plate member (6)/input-output segment (5) of the first printed circuit board (2) is located at the periphery thereof, the solder bumps (8)/plate members (6)/input-output segments (5) of the first printed circuit board (2) is easily inspected, reworked or removed.
Abstract:
A package for power converters in which a multilayers circuit board holds the components. The winding of the magnetic elements are incorporated in the multilayers circuit board. The top and some portions of the bottom layers are also support for electronic components. Some of the components are placed on the top layer, which may not be utilized for magnetic winding, reducing the footprint of the magnetic core (26a). The power dissipating devices placed on pads which have a multitude of copper coated via connecting the top to bottom layers. Through these via the heat is transferred from the power devices to the other side of the PCB. In some of the embodiments of this invention the heat can be further transferred to a metal plate connected to the multilayers circuit board via a thermally conductive insulator. The base plate has cutouts or cavities to accomodate the magnetic cores. A thermally conductive material is placed between the magnetic core (26a) and the metal plate on the bottom of the cavity.
Abstract:
The present invention relates to the development and the production of apparatus based on microelectronic components and semiconductor devices, and may widely be used in the production of multilayered printed-circuit cards and of switching structures for monocrystalline modules. The multilayered switching structure of the present invention comprises a plurality of layers of a dielectric material which include electroconductive tracks on their surfaces and which consist of switching layers (1, 2, 3). This structure also includes contact nodes (4, 5) consisting of metallised contacts which are aligned with each other and which are electrically and mechanically connected together by an electroconductive binding material (11, 14). The contact nodes are made in the form of splices arranged between the contacts. In a second embodiment, the multilayered switching plate is characterised in that the electroconductive tracks are provided on both sides of each switching layer (1, 2) and are connected together within the limits of each layer by metallised junction openings (21, 19).
Abstract:
A transformer group in which a multitude of transformers (110A and 110B) are used to supply energy to a single load. The transformers (110A and 110B) are connected in series; in order to assist in providing a "flux equalizing" effect, the invention includes a flux equalizer circuit (112A and 112B). The flux equalizer circuit (112A and 112B) provides a series of flux windings. Each flux winding is associated with a single transformer. The windings are arranged in parallel. In this manner, a balancing of the output of the transformers is obtained; the power output from each transformer is "sensed" by its associated flux winding which is "shared" with the other transformers via their own associated flux winding. Power is processed then through the secondary windings, rectifiers, and output filters to a common load.