Abstract:
A dual backplate MEMS microphone system includes a flexible diaphragm sandwiched between two single-crystal silicon backplates. Such a MEMS microphone system may be formed by fabricating each backplate in a separate wafer, and then transferring one backplate from its wafer to the other wafer, to form two separate capacitors with the diaphragm.
Abstract:
A groove is formed on a handling member, on a face to be fixed to an element, the groove making up a portion of a channel that externally communicates in the state of being fixed to the element. The handling member is fixed so that the cleavage direction of the vibrating membrane and the edge direction of the groove of the handling member intersect. Thus, the probability that a membrane will break during handling or processing of the substrate is reduced, and the handling member can be quickly removed from the substrate.
Abstract:
Methods for replication and lift-off of micro/nanostructures in single or multilayer thin films from a master substrate at wafer scale. The methods utilize polymeric materials with low-elastomeric properties to enhance the mechanical strength of the thin films during the replication and liftoff process from a master substrate, wherein the flexible polymer can have stand alone integrity. The master substrate can contain a surface relief which has a desired pattern to be replicated.
Abstract:
The disclosed technology relates generally to methods and systems for controlling the release of micro devices. Prior to transferring micro devices to a destination substrate, a native substrate is formed with micro devices thereon. The micro devices can be distributed over the native substrate and spatially separated from each other by an anchor structure. The anchors are physically connected/secured to the native substrate. Tethers physically secure each micro device to one or more anchors, thereby suspending the micro device above the native substrate. In certain embodiments, single tether designs are used to control the relaxation of built-in stress in releasable structures on a substrate, such as Si (1 0 0). Single tether designs offer, among other things, the added benefit of easier break upon retrieval from native substrate in micro assembly processes. In certain embodiments, narrow tether designs are used to avoid pinning of the undercut etch front.
Abstract:
A method includes forming a release layer over a donor substrate. A plurality of devices made of a first semiconductor material are formed over the release layer. A first dielectric layer is formed over the plurality of devices such that all exposed surfaces of the plurality of devices are covered by the first dielectric layer. The plurality of devices are chemically attached to a receiving device made of a second semiconductor material different than the first semiconductor material, the receiving device having a receiving substrate attached to a surface of the receiving device opposite the plurality of devices. The release layer is etched to release the donor substrate from the plurality of devices. A second dielectric layer is applied over the plurality of devices and the receiving device to mechanically attach the plurality of devices to the receiving device.
Abstract:
The disclosure provides methods and apparatus for release-assisted microcontact printing of MEMS. Specifically, the principles disclosed herein enable patterning diaphragms and conductive membranes on a substrate having articulations of desired shapes and sizes. Such diaphragms deflect under applied pressure or force (e.g., electrostatic, electromagnetic, acoustic, pneumatic, mechanical, etc.) generating a responsive signal. Alternatively, the diaphragm can be made to deflect in response to an external bias to measure the external bias/phenomenon. The disclosed principles enable transferring diaphragms and/or thin membranes without rupturing.
Abstract:
A dual backplate MEMS microphone system includes a flexible diaphragm sandwiched between two single-crystal silicon backplates. Such a MEMS microphone system may be formed by fabricating each backplate in a separate wafer, and then transferring one backplate from its wafer to the other wafer, to form two separate capacitors with the diaphragm.
Abstract:
Dispositif électromécanique caractérisé en ce qu'il comprend : - un empilement formé d'une couche isolante (31) interposée entre deux couches massives (10, 30), - une structure micromécanique (60, 61) d'épaisseur prédéterminée en suspension au-dessus d'une cavité (4) de profondeur prédéterminée, la cavité (4) et la structure micromécanique (60, 61) formant l'une (10) des deux couches massives (10, 30) de l'empilement, et la couche isolante (31) formant le fond de ladite cavité (4).
Abstract:
A method includes forming a release layer over a donor substrate. A plurality of devices made of a first semiconductor material are formed over the release layer. A first dielectric layer is formed over the plurality of devices such that all exposed surfaces of the plurality of devices are covered by the first dielectric layer. The plurality of devices are chemically attached to a receiving device made of a second semiconductor material different than the first semiconductor material, the receiving device having a receiving substrate attached to a surface of the receiving device opposite the plurality of devices. The release layer is etched to release the donor substrate from the plurality of devices. A second dielectric layer is applied over the plurality of devices and the receiving device to mechanically attach the plurality of devices to the receiving device.