Abstract:
A doped silica-titania (“DST”) glass article that includes a glass article having a glass composition comprising a silica-titania base glass containing titania at 7 to 14 wt. % and a balance of silica, and a dopant selected from the group consisting of (a) F at 0.7 to 1.5 wt. %, (b) B2O3 at 1.5 to 5 wt. %, (c) OH at 1000 to 3000 ppm, and (d) B2O3 at 0.5 to 2.5 wt. % and OH at 100 to 1400 ppm. The glass article has an expansivity slope of less than about 1.3 ppb/K2 at 20° C. For DST glass articles doped with F or B2O3, the OH level can be held to less than 10 ppm, or less than 100 ppm, respectively. In many aspects, the DST glass articles are substantially free of titania in crystalline form.
Abstract:
A method for producing a blank of iron-doped silica glass with high silicic acid content for use as heat protection glass is provided. The method involves: (a) producing an iron-doped SiO2 soot body which contains iron in a first oxidation state Fe3+ by flame hydrolysis of a silicon-containing and an iron-containing starting substance, (b) drying the soot body to obtain a mean hydroxyl group content of less than 10 ppm by weight, and (c) vitrifying the soot body under a reducing atmosphere that is suitable for at least partially reducing the iron from the first oxidation state Fe3+ to a second, lower oxidation state Fe2+. A blank is obtained having an iron content between 0.1 and 1% by weight which exhibits an internal transmission of at most 40% in the infrared wavelength range and an internal transmission of at least 85% in the visible spectral range.
Abstract:
The present invention relates to a TiO2-containing quartz glass substrate for an imprint mold having a main surface and a side surface, in which the side surface has an arithmetic average roughness (Ra) of 1 nm or less, and the side surface has a root mean square (MSFR_rms) of concaves and convexes in the wavelength region of from 10 μm to 1 mm being 10 nm or less.
Abstract:
The present invention relates to a substrate for EUV lithography optical member, comprising a silica glass containing TiO2, in which the substrate has two opposite surfaces, and the substrate has temperatures at which a coefficient of linear thermal expansion (CTE) is 0 ppb/° C. (Cross-Over Temperature: COT), and in which the two opposite surfaces have difference in the COTs of 5° C. or more.
Abstract:
The invention relates to a silica glass compound having improved physical and chemical properties. In one embodiment, the present invention relates to a silica glass having a desirable brittleness in combination with a desirable density while still yielding a glass composition having a desired hardness and desired strength relative to other glasses. In another embodiment, the present invention relates to a silica glass composition that contains at least about 85 mole percent silicon dioxide and up to about 15 mole percent of one or more dopants selected from F, B, N, Al, Ge, one or more alkali metals (e.g., Li, Na, K, etc.), one or more alkaline earth metals (e.g., Mg, Ca, Sr, Ba, etc.), one or more transition metals (e.g., Ti, Zn, Y, Zr, Hf, etc.), one or more lanthanides (e.g., Ce, etc.), or combinations of any two or more thereof.
Abstract:
The present invention relates to a substrate for EUV lithography optical member, comprising a silica glass containing TiO2, in which the substrate has two opposite surfaces, and the substrate has temperatures at which a coefficient of linear thermal expansion (CTE) is 0 ppb/° C. (Cross-Over Temperature: COT), and in which the two opposite surfaces have difference in the COTs of 5° C. or more.
Abstract:
To optimize an optical component of synthetic quartz glass, in the case of which a quartz glass blank is subjected to a multistage annealing treatment, with respect to compaction and central birefringence, the present invention suggests a method comprising the following steps: (a) a first treatment phase during which the quartz glass blank is treated in an upper temperature range between 1130° C. and 1240° C., (b) cooling the quartz glass blank at a first-higher-mean cooling rate to a quenching temperature below 1100° C., a fictive temperature with a high mean value of 1100° C. or more being reached in the quartz glass, (c) a second treatment phase which comprises cooling of the quartz glass blank at a second-lower-mean cooling rate, and in which the quartz glass blank is treated in a lower temperature range between 950° C. and 1100° C. such that a fictive temperature is reached in the quartz glass with a low mean value which is at least 50° C. lower than the high mean value of the fictive temperature according to method step (b).
Abstract:
The invention relates to a method for the economic production of a blank for a component made from laser-active quartz glass in any form or dimension. The method comprises the following method steps: a) preparation of a dispersion with a solids content of at least 40 wt. %, comprising SiO2 nanopowder and doping agents, including a cation of the rare earth metals and transition metals in a fluid, b) granulation by agitation of the dispersion, with removal of moisture to form a doped SiO2 granulate of spherical porous granular particles with a moisture content of less than 35 wt. % and a density of at least 0.95 g/cm3, c) drying and purification of the SiO2 granulate, by heating to a temperature of at least 1000° C. to form doped porous SiO2 grains with an OH content of less than 10 ppm and d) sintering or fusing the doped SiO2 grains in a reducing atmosphere to give the blank made from doped quartz glass.
Abstract:
Disclosed is a synthetic silica glass optical material having high resistance to optical damage by ultraviolet radiation in the ultraviolet wavelength range, particularly in the wavelength less than about 250 nm and particularly, exhibiting a low laser induced wavefront distortion; specifically a laser induced wavefront distortion, measured at 633 nm, of between about −1.0 and 1.0 nm/cm when subjected to 10 billion pulses of a laser operating at approximately 193 nm and at a fluence of approximately 70 μJ/cm2. The synthetic silica glass optical material of the present invention comprises OH concentration levels of less than about 600 ppm, preferably less than 200 ppm, and H2 concentration levels less than about 5.0×1017 molecules/cm3′ and preferably less than about 2.0×1017 molecules/cm3.
Abstract translation:公开了一种合成石英玻璃光学材料,其特征在于波长小于约250nm,特别是具有低激光诱导波前失真的紫外线波长范围内具有高抗紫外线辐射的光学损伤, 具体地,在经受约193nm处的激光器操作的100亿脉冲和大约70μJ/ cm 2的能量密度下,在633nm处测量的激光感应波前失真在约-1.0和1.0nm / cm之间。 本发明的合成石英玻璃光学材料包含小于约600ppm,优选小于200ppm的OH浓度水平和小于约5.0×10 17分子/ cm 3',优选小于约2.0×10 17分子/ cm 3的H 2浓度水平 。
Abstract:
Disclosed are high purity synthetic silica glass material having a high OH concentration homogeneity in a plane perpendicular to the optical axis, and process of making the same. The glass has high refractive index homogeneity. The glass can have high internal transmission of at least 99.65%/cm at 193 nm. The process does not require a post-sintering homogenization step. The controlling factors for high compositional homogeneity, thus high refractive index homogeneity, include high initial local soot density uniformity in the soot preform and slow sintering, notably isothermal treatment during consolidation.