Abstract:
An optical fiber containing alkali metal elements or the like in which Rayleigh scattering loss can be reduced is provided. An optical fiber includes a core composed of silica glass and a cladding which surrounds the core, has a refractive index lower than a refractive index of the core, and is composed of silica glass containing fluorine. The core contains a first group of dopants and a second group of dopants having a diffusion coefficient lower than a diffusion coefficient of the first group of dopants. The difference between the maximum value and the minimum value of residual stress in the optical fiber is 150 MPa or less.
Abstract:
The present disclosure illustrates a composition of a visible light and infrared light transmitting optical colored glass. The chalcogenide semiconductor compound Cu2ZnSnS4 or Cu2ZnSnSe4 is added in the silicate glass system composition, to adjust color and the optical property of the glass. The glass made of this composition has a characteristic of the visible light and infrared light transmitting in a wavelength of range 400 nm to 1200 nm.
Abstract:
Provided is lithium disilicate crystalline glass containing cristobalite crystal phase for high strength and aesthetic traits and its manufacturing process thereof. Exemplary embodiments of the present invention provide the high strength and aesthetic lithium disilicate crystalline glass, one kind of dental restoration materials, and its manufacturing method which induces the growth of the different crystal phase, cristobalite, from glass with lithium disilicate crystal.
Abstract:
A doped silica-titania glass article is provided that includes a glass article having a glass composition comprising (i) a silica-titania base glass, (ii) a fluorine dopant, and (iii) a second dopant. The fluorine dopant has a concentration of fluorine of up to 5 wt. % and the second dopant comprises one or more oxides selected from the group consisting of Al, Nb, Ta, B, Na, K, Mg, Ca and Li oxides at a total oxide concentration from 50 ppm to 6 wt. %. Further, the glass article has an expansivity slope of less than 0.5 ppb/K2 at 20° C. The second dopant can be optional. The composition of the glass article may also contain an OH concentration of less than 100 ppm.
Abstract:
The present disclosure illustrates a composition of a visible light and infrared light transmitting optical colored glass. The chalcogenide semiconductor compound Cu2ZnSnS4 or Cu2ZnSnSe4 is added in the silicate glass system composition, to adjust color and the optical property of the glass. The glass made of this composition has a characteristic of the visible light and infrared light transmitting in a wavelength of range 400 nm to 1200 nm.
Abstract:
The invention relates to a silica glass compound having improved physical and chemical properties. In one embodiment, the present invention relates to a silica glass having a desirable brittleness in combination with a desirable density while still yielding a glass composition having a desired hardness and desired strength relative to other glasses. In another embodiment, the present invention relates to a silica glass composition that contains at least about 85 mole percent silicon dioxide and up to about 15 mole percent of one or more dopants selected from F, B, N, Al, Ge, one or more alkali metals (e.g., Li, Na, K, etc.), one or more alkaline earth metals (e.g., Mg, Ca, Sr, Ba, etc.), one or more transition metals (e.g., Ti, Zn, Y, Zr, Hf, etc.), one or more lanthanides (e.g., Ce, etc.), or combinations of any two or more thereof.
Abstract:
A glass preform manufacturing method, includes: preparing a glass element having a rough surface; turning a raw material of an alkali metal compound or a raw material of an alkaline earth metal compound into particles; depositing particles of the alkali metal compound or the alkaline earth metal compound on the rough surface of the glass element; oxidizing the particles of the alkali metal compound or the alkaline earth metal compound while diffusing alkali metal oxide or alkaline earth metal oxide in the glass element; and manufacturing a glass preform into which the alkali metal oxide or the alkaline earth metal oxide is doped.
Abstract:
A method is provided for producing a silica container arranged with a substrate, having a rotational symmetry, comprised of mainly a silica, and containing gaseous bubbles at least in its peripheral part, and an inner layer, formed on an inner surface of the substrate and comprised of a transparent silica glass; wherein a powdered silica, having particle diameter of 10 to 1000 μm, containing Ca, Sr, and Ba with the total concentration of 50 to 5000 ppm by weight, and releasing hydrogen molecules with the amount of 3×1016 to 3×1019 molecules/g upon heating at 1000° C. under vacuum, is prepared at least as a powdered raw material for forming the inner layer, and then the inner layer is formed from the powdered silica as the powdered raw material for forming the inner layer.
Abstract:
The present invention provides a method of making rare earth (RE) doped optical fiber using BaO as co-dopant instead of Al or P commonly used for incorporation of the RE in silica glass by MCVD and solution doping technique. The method comprises deposition of particulate layer of GeO2 doped SiO2 with or without small P2O5 for formation of the core and solution doping by soaking the porous soot layer into an aqueous solution of RE and Ba containing salt. This is followed by dehydration and sintering of the soaked deposit, collapsing at a high temperature to produce the preform and drawing of fibers of appropriate dimension. The use of Ba-oxide enables to eliminate unwanted core-clad interface defect which is common in case of Al doped fibers. The fibers also show good RE uniformity, relatively low optical loss in the 0.6-1.6 μm wavelength region and good optical properties suitable for their application in amplifiers, fiber lasers and sensor devices.
Abstract:
An apparatus for manufacturing a glass perform, includes: a dummy tube section, a reservoir portion, and a cooling portion; and a glass tube section in which particles of an alkali metal compound or an alkaline earth metal compound which have flowed into the glass tube section from the dummy tube section are heated by a second heat source which performs traverse, and oxides of the particles being deposited on an inner wall and dispersed in the glass tube section. In the cooling portion of the dummy tube section, vapor of the alkali metal compound or the alkaline earth metal compound generated by heating of a first heat source is cooled and condensed by a dry gas flowing into the dummy tube section, and thereby the particles are generated.