Abstract:
The disclosure relates to fluid working devices including reciprocating internal combustion engines, compressors and pumps. A number of arrangements for pistons and cylinders of unconventional configuration are described, mostly intended for use in reciprocating internal combustion IC engines operating without cooling. Included are toroidal combustion or working chambers, some with fluid flow through the core of the toroid, pistons reciprocating between pairs of working chambers, tensile valve actuation, tensile links between piston and crankshaft, energy absorbing piston-crank links, crankshafts supported on gas bearings, cylinders rotating in housings, injectors having components reciprocate or rotate during fuel delivery. In some embodiments pistons mare rotate while reciprocating. High temperature exhaust emissions systems are described, including those containing filamentary material, as are procedures for reducing emissions during cold start by means of valves at reaction volume exit. Compound engines having the new engines as a reciprocating stage are described. Improved vehicles, aircraft, marine craft and transmissions adapted to receive or be linked to the improved IV engines are also disclosed.
Abstract:
One embodiment of the present invention provides a poppet valve offering an increased valve area, comprising an outer valve head having an outer valve port and an inner valve head having an inner valve port. The inner valve head is rotatable relative to the outer valve head to align the inner and outer valve ports, thereby increasing the effective valve area of the poppet valve. The path created by aligning the inner and outer valve ports can be designed to mix air flowing through the poppet valve. Another embodiment of the present invention provides a valve guide containing a poppet valve having a guide pin, wherein the guide pin rests within a groove in the valve guide. As the poppet valve moves through the valve guide, the groove controls movement of the guide pin and causes the poppet valve to rotate relative to the valve guide.
Abstract:
A pneumatically actuated valve assembly for use as intake and/or exhaust valves on two- or four-stroke internal combustion engines. The assembly includes a valve (100), valve housing (200), and compressed gas distribution and timing mechanisms (FIGS. 5–8). The valve (100) is comprised of a short light weight hollow cylindrical body with a capped lower end and an opened upper end. The valve is further defined by a plurality of ports (104) adjacent to the lower end and a collar (198) encircling the body adjacent the upper end. The valve housing (200) is hollow and tubular having a larger diameter upper section and a smaller diameter lower section in which the valve (100) slides up to close and down to open. The housing (200) further includes hollow channels which direct compressed gas, managed by the distribution and timing mechanism, alternately towards the areas above and below the valve collar at regular intervals to open and close the valve, respectively.
Abstract:
A pneumatically actuated valve assembly for use as intake and/or exhaust valves on two- or four-stroke internal combustion engines. The assembly includes a valve (100), valve housing (200), and compressed gas distribution and timing mechanisms (FIGS. 5-8). The valve (100) is comprised of a short light weight hollow cylindrical body with a capped lower end and an opened upper end. The valve is further defined by a plurality of ports (104) adjacent to the lower end and a collar (198) encircling the body adjacent the upper end. The valve housing (200) is hollow and tubular having a larger diameter upper section and a smaller diameter lower section in which the valve (100) slides up to close and down to open. The housing (200) further includes hollow channels which direct compressed gas, managed by the distribution and timing mechanism, alternately towards the areas above and below the valve collar at regular intervals to open and close the valve, respectively.
Abstract:
The invention relates to an intake or exhaust valve mechanism with a variable valve opening cross section for use in an admission opening of an internal combustion engine and having a gas exchange valve acted on by the force of a valve spring and displaceable axially back and forth inside a guide by a valve control unit; the position of the sealing slide relative to the gas exchange valve in the axial direction is continuously variable by means of an adjusting unit. A sealing slide is disposed coaxially to the gas exchange valve, is acted upon by the force of a coupling spring, and is displaceable axially back and forth by the valve control unit.
Abstract:
The invention relates to a valve mechanism with a variable valve opening cross section for use in an internal combustion engine and having a gas exchange valve acted on by the force of a valve spring and displaceable axially back and forth inside a guide by a valve control unit; the position of the sealing slide relative to the gas exchange valve in the axial direction is continuously variable by means of an adjusting unit. A sealing slide disposed coaxially to the gas exchange valve, is acted upon by the force of a coupling spring, and is displaceable axially back and forth by the valve control unit. The position of the sealing slide is variable in the axial direction relative to the gas exchange valve by means of an adjusting unit.
Abstract:
A valve assembly includes a block with a chamber formed therein and a port for accessing the chamber. A fluid inlet passage and a fluid exhaust passage are formed through the block and communicate with the port. A main valve includes a head which is reciprocated into and out of engagement with a lower valve seat formed on a portion of the port. An auxiliary valve includes a head which is reciprocated through the port between a first position below the port and a second position above the port. A hollow cylindrical valve includes a central passage therethrough for fluid flow, and is disposed for reciprocating movement into and out of engagement with an upper valve seat formed on a portion of the port, the cylindrical valve closing the inlet passage when moved to the engaged position. The cylindrical valve passage is in communication with the exhaust passage throughout its movement. Apparatus is provided for sequentially moving each of the main valve, auxiliary valve, and cylindrical valve to sequentially introduce air from the inlet passage through the port and into the chamber, close the port from all fluid flow, and exhaust fluid from the chamber through the port and through the exhaust passage.
Abstract:
An extended circumference intake poppet valve system for use with a single charge carrying intake duct/port to an engine cylinder in a four cycle internal combustion engine to include three or more annular intake poppet valves (secondary valves), annular valve seats (mini ports), disposed within a primary valve head which spans said single duct/port (valve system), said valve system in fluid communication with said duct and said cylinder for opening and sealing said duct/port at said duct seat, intake valve lifting and closing means, wherein the area of the duct/port, and the matched area of the open valves are substantially equal for an extended optimum charge flow period, and in addition, valve open areas at all valve lift points during the inlet event that occur, initially and throughout extended duration through closure, are enlarged when compared with a single poppet valve servicing the same duct/port, resulting in greatly enhanced charge volume into the cylinder during the intake event.