Abstract:
A display having hot electron type electron sources displaying an image by a line sequential scanning scheme can prevent poor brightness uniformity along scan lines. A top electrode bus line of a hot electron type electron source is a scan line and a bottom electrode thereof is a data line. The top electrode bus line has a sheet resistance lower than that of the bottom electrode. The wire sheet resistance of the scam line can be reduced to several m/square. When forming a 40 inch large screen FED using the hot electron type electron sources, a voltage drop amount produced in the scan line can be suppressed below an allowable range. A high quality image without poor brightness uniformity can be obtained.
Abstract:
An emitter includes an electron source and a cathode. The cathode has an emissive surface. The emitter further includes a continuous anisotropic conductivity layer disposed between the electron source and the emissive surface of the cathode. The anisotropic conductivity layer has an anisotropic sheet resistivity profile and provides for substantially uniform emissions over the emissive surface of the emitter.
Abstract:
An electron emission source includes a first electrode, an insulating layer, and a second electrode stacked in that sequence, wherein the first electrode is a carbon nanotube composite structure comprising a carbon nanotube layer and a semiconductor layer stacked together, and the semiconductor layer is sandwiched between the carbon nanotube layer and the insulating layer. A method for making the electron emission source is also related.
Abstract:
An electron emission device includes a number of electron emission units spaced from each other, wherein each of the number of electron emission units includes a first electrode, a semiconductor layer, an electron collection layer, an insulating layer, and a second electrode stacked with each other, the electron collection layer is in contact with the semiconductor layer and the insulating layer, and the electron collection layer is a conductive layer.
Abstract:
An electron emission source includes a first electrode, a semiconductor layer, an insulating layer, and a second electrode stacked in that sequence, wherein the semiconductor layer defines a number of holes, the first electrode comprises a carbon nanotube layer, and a portion of the carbon nanotube layer corresponding to the number of holes is suspended on the number of holes.
Abstract:
An electron emission device includes a number of first electrodes and a number of second electrodes intersected with each other to define a number of intersections. An electron emission unit is sandwiched between the first electrode and the second electrode at each of the number of intersections, wherein the electron emission unit includes a semiconductor layer and an insulating layer stacked together, the semiconductor layer defines a number of holes, the carbon nanotube layer covers the number of holes, and a portion of the carbon nanotube layer is suspended on the number of holes.
Abstract:
The present invention provides an electron emitting element, comprising: a first electrode; an insulating fine particle layer formed on the first electrode and composed of insulating fine particles; and a second electrode formed on the insulating fine particle layer, wherein the insulating fine particle layer is provided with recesses formed in a surface thereof, the surface facing the second electrode, the recesses each having a depth smaller than a thickness of the insulating fine particle layer, and when a voltage is applied between the first electrode and the second electrode, electrons provided from the first electrode are accelerated in the insulating fine particle layer to be emitted though the second electrode.
Abstract:
An electron emitting element of the present invention includes an electron acceleration layer between an electrode substrate and a thin-film electrode. The electron acceleration layer includes a binder component in which insulating fine particles and conductive fine particles are dispersed. Therefore, the electron emitting element of the present invention is capable of preventing degradation of the electron acceleration layer and can efficiently and steadily emit electrons not only in vacuum but also under the atmospheric pressure. Further, the electron emitting element of the present invention can be formed so as to have an improved mechanical strength.
Abstract:
The present invention provides an electron emitting element, comprising: a first electrode; an insulating fine particle layer formed on the first electrode and composed of insulating fine particles; and a second electrode formed on the insulating fine particle layer, wherein the insulating fine particles are monodisperse fine particles, and when voltage is applied between the first electrode and the second electrode, electrons are discharged from the first electrode into the insulating fine particle layer and accelerated through the insulating fine particle layer to be emitted from the second electrode.
Abstract:
An electron emitting element of the present invention includes an electron acceleration layer that includes insulating fine particles but does not include conductive fine particles, the electron acceleration layer being provided between an electrode substrate and a thin-film electrode. This electron emitting element accelerates electrons in the electron acceleration layer and emits the electrons from the thin-film electrode, when a voltage is applied between the electrode substrate and the thin-film electrode. Accordingly, the electron emitting element of the present invention makes dielectric breakdown hard to occur. Further, this electron emitting element is produced easily at low cost and capable of emitting a steady and sufficient amount of electrons.