Abstract:
The invention relates to a micromechanical component comprising: a substrate (1); a monocrystalline layer (10), which is provided above the substrate (1) and which has a membrane region (10a); a cavity (50) that is provided underneath the membrane region (10a), and; one or more porous regions (150; 150'), which are provided inside the monocrystalline layer (10) and which have a doping (n ; p ) that is higher than that of the surrounding layer (10).
Abstract translation:本发明提供了一种具有衬底(1)的微机械部件; 一个所提供的单晶层(10),其具有隔膜部(10A)在所述衬底(1)的上方; 一个设置在所述空腔的膜区域(10a)的下面(50); 和一个或多个单晶层(10)的内部设置的多孔区域(150; 150“),其具有相对于增加的掺杂的周边层(10)(N <+>; P <+>)。
Abstract:
A micromirror (140) for fast beam steering and method of fabricating the same. The micromirror of the present invention is lightweight and optically flat, and includes a tensile membrane (144) that is stretched under high tension across a rigid single-crystal silicon support rib structure (142). A thin layer of gold may be deposited on the polysilicon membrane to improve reflectivity. The tensile stress in the membrane gives the micromirror a very high resonant frequency, thereby allowing the mirror (40) to be scanned at high frequencies without exciting resonant nodes that may compromise the flatness of the optical surface properties. The tensile stress also causes the optical surface to be stretched flat. The micromirror of the present invention may be actuated by a staggered torsional (42) electrostatic combdrive.
Abstract:
A micromirror for fast beam steering and method of fabricating the same. The micromirror of the present invention is lightweight and optically flat, and includes a tensile membrane that is stretched under high tension across a rigid single-crystal silicon support rib structure. A thin layer of gold may be deposited on the polysilicon membrane to improve reflectivity. The tensile stress in the membrane gives the micromirror a very high resonant frequency, thereby allowing the mirror to be scanned at high frequencies without exciting resonant nodes that may compromise the flatness of the optical surface and ruin its optical properties. The tensile stress also causes the optical surface to be stretched flat. The micromirror of the present invention may be actuated by a staggered torsional electrostatic combdrive.
Abstract:
A staggered torsional electrostatic combdrive includes a stationary combteeth assembly (22) and a moving combteeth assembly (30) with a mirror (40) and a torsional hinge (42). The moving combteeth assembly is positioned entirely above the stationary combteeth assembly by a predetermined vertical displacement during a combdrive resting state.
Abstract:
Verfahren zum Herstellen eines mikromechanischen Sensors (100), aufweisend die Schritte: Bereitstellen eines MEMS-Wafers (10) mit einem MEMS-Substrat (1), wobei im MEMS-Substrat (1) in einem Membranbereich (3a) eine definierte Anzahl von Ätzgräben ausgebildet wird, wobei der Membranbereich in einer ersten Siliziumschicht (3), die definiert beabstandet vom MEMS-Substrat (1) angeordnet ist, ausgebildet wird; Bereitstellen eines Kappenwafers (20); Bonden des MEMS-Wafers (10) mit dem Kappenwafer (20); und Ausbilden eines Medienzugangs (6) zum Membranbereich (3a) durch Aufschleifen des MEMS-Substrats (1).
Abstract:
The present invention provides a micro-electro-mechanical device with a recessed micromechanical structure and to a method of fabrication thereof. The present invention also provides silicon wafers provided with recessed micromechanical structures, which are useful in the field of micro-electro-mechanical systems. The present invention also provides a method for fabrication of micro-electro-mechanical device using micromachining techniques.
Abstract:
A method of manufacturing an insulating micro-structure (100) by etching a plurality of trenches in a silicon substrate (101) and filling said trenches with insulating materials (105, 107). The trenches are etched and then oxidized until completely or almost completely filled with silicon dioxide. Additional insulating material is then deposited as necessary to fill any remaining trenches, thus forming the structure. When the top of the structure is metallized, the insulating structure increases voltage resistance and reduces the capacitive coupling between the metal (109) and the silicon substrate. Part of the silicon substrate underlying the structure is optionally removed further to reduce the capacitive coupling effect. Hybrid silicon-insulator structures can be formed to gain the effect of the benefits of the structure in three-dimensional configurations, and to permit metallization of more than one side of the structure.
Abstract:
Die Erfindung betrifft Verfahren zum Herstellen von Isolationsstrukturen für mikromechanischen Sensoren in einkristalliner Oberflächentechnologie. Bei bekannten Verfahren werden durch tiefe Trenchgräben definierte Siliziumstrukturen geätzt und durch einen "Release-Etch" Schritt auch auf ihrer Unterseite zum Substrat hin freigelegt. Anschliessendens Auffüllen dieser Gräben mit einem dielektrisch isolierenden Material, wie zum Beispiel Siliziumdioxid, führt zu einer festen Verankerung durch eine dreiseitige, einseitig offene Umklammerung der Siliziumstruktur mit aufgefüllten Trenchgräben. Der wesentliche Gedanke der Erfindung ist, anstelle des Auffüllens von Gräben die Umwandlung von dünnwandigem Silizium in ein elektrisch nichtleitendes Material vorzunehmen. Dies kann zum Beispiel mit Hilfe einer thermischen Oxidation von schmalen, zuvor durch Trenchgräben freigelegten Siliziumstegen bewerkstelligt werden. In der Minimalkonfiguration müssen dazu zwei Trenchgräben (Löcher) pro Steg mit der gewünschten Strukturtiefe geätzt werden. Der dazwischenliegende Siliziumsteg muss schmal genug sein, um vollständig thermisch durchoxidiert werden zu können.
Abstract:
A method of fabricating a thick silicon dioxide layer without the need for long deposition or oxidation and a device having such a layer are provided. Deep reactive ion etching (DRIE) is used to create high-aspect ratio openings or trenches and microstructures or silicon pillars, which are then oxidized and/or refilled with LPCVD oxide or other deposited silicon oxide films to create layers as thick as the DRIE etched depth allows. Thickness in the range of 10-100/um have been achieved. Periodic stiffeners perpendicular to the direction of the trenches are used to provide support for the pillars during oxidation. The resulting S'02 layer is impermeable and can sustain large pressure difference. Thermal tests show that such thick silicon dioxide diaphragms or layers can effectively thermally isolate heated structures from neighboring structures and devices within a distance of hundred of microns. Such S'02 diaphragms or layers of thickness 50-60f,m can sustain an extrinsic shear stress up to 3-5 Mpa. These thick insulatingmicrostructures or layers can be used in thermal, mechanical, fluidic, optical, and bio microsystems.
Abstract:
Es wird eine einfache und kostengünstige Möglichkeit zur Erzeugung optisch transparenter Bereiche (5, 6) in einem Siliziumsubstrat (1) vorgeschlagen, mit dem sich sowohl optisch transparente Bereiche beliebiger Dicke als auch optisch transparente Bereiche über einem Hohlraum im Siliziumsubstrat realisieren lassen. Dazu wird zunächst mindestens ein definierter Bereich (5, 6) des Siliziumsubstrats (1) porös geätzt. Danach wird der definierte poröse Bereich (5, 6) des Siliziumsubstrats (1) oxidiert.