Abstract:
A single mode optical fiber having a core made from silica and less than or equal to about 11 weight % germania and having a maximum relative refractive index Δ1MAX. The optical fiber also has an inner cladding surrounding the core and having a minimum relative refractive index Δ2MIN, a first outer cladding surrounding the inner cladding and a second outer cladding surrounding the first outer cladding. The viscosity at 1650° C. of the second outer cladding minus the viscosity at 1650° C. of the first outer cladding is greater than 0.1e7 Poise, and Δ1MAX>Δ2MIN. The single mode optical fiber may also have an outer cladding surrounding the inner cladding made from silica or SiON. The first outer cladding has a maximum relative refractive index Δ3MAX, and Δ3MAX>Δ2MIN.
Abstract:
One embodiment of the disclosure relates to a method of making an optical fiber comprising the steps of: (i) exposing a silica based preform with at least one porous glass region having soot density of ρ to a gas mixture comprising SiCl4 having SiCl4 mole fraction ySiCl4 at a doping temperature Tdop such that parameter X is larger than 0.03 to form the chlorine treated preform, wherein X = 1 1 + [ ( ρ ρ s - ρ ) 0.209748 T dop Exp [ - 5435.33 / T dop ] y SiCl 4 3 / 4 ] and ρs is the density of the fully densified soot layer; and (ii) exposing the chlorine treated preform to temperatures above 1400° C. to completely sinter the preform to produce sintered optical fiber preform with a chlorine doped region; and (iii) drawing an optical fiber from the sintered optical preform.
Abstract translation:本公开的一个实施方案涉及一种制造光纤的方法,包括以下步骤:(i)将二氧化硅基预型体暴露于具有烟炱密度的至少一个多孔玻璃区域; 涉及在掺杂温度Tdop下包括具有SiCl 4摩尔分数ySiCl 4的SiCl 4的气体混合物,使得参数X大于0.03以形成经氯处理的预成型体,其中X = 11 + [(&rgr; s - &rgr;)0.209748 T dop Exp] [ - 5435.33 / T dop] y SiClü务4 3/4]和&rgr; s是完全致密的烟灰层的密度; 和(ii)将氯处理的预制件暴露于高于1400℃的温度下,以完全烧结预成型件,以制备具有氯掺杂区域的烧结光纤预制件; 和(iii)从烧结的光学预型件拉制光纤。
Abstract:
An optical fiber preform which can be drawn into a low attenuation optical fiber is provided with a core portion and a cladding portion surrounding the core portion. The core portion includes a first core portion and a second core portion surrounding the first core portion. The cladding portion includes a first cladding portion surrounding the second core portion and a second cladding portion surrounding the first cladding portion. The first core portion contains an alkali metal element, the concentration of oxygen molecules contained in glass is 30 mol ppb or more and 200 mol ppb or less in a part of or entire region having an alkali metal atom concentration of 100 atomic ppm or more, and the concentration of oxygen molecules contained in glass is 10 mol ppb or less in a region having an alkali metal atom concentration of 50 atomic ppm or less.
Abstract:
An F-doped silica glass, a process for making the glass, an optical member comprising the glass, and an optical system comprising such optical member. The glass material comprises 0.1-5000 ppm by weight of fluorine. The glass material according to certain embodiments of the present invention has low polarization-induced birefringence, low LIWFD and low induced absorption at 193 nm.
Abstract:
In the nanoimprint lithography, a titania-doped quartz glass having a CTE of −300 to 300 ppb/° C. between 0° C. and 250° C. and a CTE distribution of up to 100 ppb/° C. at 25° C. is suited for use as nanoimprint molds.
Abstract:
An ideal quartz glass for a wafer jig for use in an environment having an etching effect is distinguished by both high purity and high resistance to dry etching. To indicate a quartz glass that substantially fulfills these requirements, it is suggested according to the invention that the quartz glass is doped with nitrogen at least in a near-surface area, has a mean content of metastable hydroxyl groups of less than 30 wt ppm and that its fictive temperature is below 1250° C. and its viscosity is at least 1013 dPa·s at a temperature of 1200° C. An economic method for producing such a quartz glass comprises the following method steps: melting an SiO2 raw material to obtain a quartz glass blank, the SiO2 raw material or the quartz glass blank being subjected to a dehydration measure, heating the SiO2 raw material or the quartz glass blank to a nitriding temperature in the range between 1050° C. and 1850° C. in an ammonia-containing atmosphere, a temperature treatment by means of which the quartz glass of the quartz glass blank is set to a fictive temperature of 1250° C. or less, and a surface treatment of the quartz glass blank with formation of the quartz glass jig.
Abstract:
A method of forming an alkali metal oxide-doped optical fiber by diffusing an alkali metal into a surface of a glass article is disclosed. The silica glass article may be in the form of a tube or a rod, or a collection of tubes or rods. The silica glass article containing the alkali metal, and impurities that may have been unintentionally diffused into the glass article, is etched to a depth sufficient to remove the impurities. The silica glass article may be further processed to form a complete optical fiber preform. The preform, when drawn into an optical fiber, exhibits a low attenuation.
Abstract:
In the nanoimprint lithography, a titania-doped quartz glass having a CTE of −300 to 300 ppb/° C. between 0° C. and 250° C. and a CTE distribution of up to 100 ppb/° C. at 25° C. is suited for use as nanoimprint molds.
Abstract:
Disclosed are high purity synthetic silica material having an internal transmission at 193 nm of at least 99.65%/cm and method of preparing such material. The material is also featured by a high compositional homogeneity in a plane transverse to the intended optical axis. The soot-to-glass process for making the material includes a step of consolidating the soot preform in the presence of H2O and/or O2.
Abstract translation:公开了具有193nm以上的内透射率为至少99.65%/ cm 3的高纯度合成二氧化硅材料及其制备方法。 该材料的特征还在于横向于预期光轴的平面中具有高的组成均匀性。 用于制造材料的烟灰对玻璃工艺包括在H 2 O 2和/或O 2 2的存在下固化烟灰预制件的步骤。
Abstract:
A process for producing fluorine-containing glass. An SiO2 soot is synthesized by hydrolyzing SiCl4. The soot is heated in a chlorine-compound-free atmosphere containing a fluorine compound gas to form a fluorine-containing silica glass. The glass contains not more than 10 ppm OH group, not more than 10 ppm Cl, and not less than 1,000 ppm F. The concentration ratio of F/Cl is 10,000 or more.