Abstract:
Miniature X-ray source comprising a support structure provided with a throughgoing hole, an anode is arranged at one end and a cathode (8,24) at the other end of the hole, thereby defining a cavity, the anode and cathode are adapted to be energised in order to generate X-ray radiation. The support structure has a cross-sectional shape that is determined such that a desired radiation distribution of the radiation generated by the X-ray source is achieved. Also a method of manufacturing miniature X-ray sources is disclosed.
Abstract:
The invention relates to an X-ray source, comprising a first support member and a second support member, wherein the first and second support members are joined together so as to form a cavity between them and such that they are electrically insulated from each other. A cathode and an anode are disposed inside the cavity and opposite each other. The cathode is suitably made of diamond or diamond like material, and comprises at least one pointed element.
Abstract:
An imaging apparatus (100) for providing an image from a display (106) to an observer (101), comprising: a display (106) generating an optical output, an imaging surface member (109) constructed and arranged for viewing by said observer, and a scanning mirror/lens assembly (102) optically interposed between the display and the imaging surface member, and constructed and arranged to motively repetitively scan the display, generate a scanned image, and transmit the scanned image to the imaging surface member, for viewing of the scanned image. Various field emitter display designs and subassemblies are described, which may be usefully employed in such imaging apparatus.
Abstract:
A catheter for emitting radiation is disclosed, comprising a catheter shaft (104), and an x-ray unit (102) attached to the distal end of the catheter shaft. The x-ray unit comprises an anode (112), and a cathode (110) coupled to an insulator (108) to define a vacuum chamber (106). The cathode is preferably a field emission cathode of graphite or graphite coated with titanium carbide, for example. The anode is preferably tungsten, and the insulator is preferably pyrolytic boron nitride. The x-ray unit is preferably coupled to a voltage source through a coaxial cable. The anode is preferably a heavy metal such as tungsten. The cathode may also be a ferroelectric material. The x-ray unit can have a diameter less than about 4mm, and a length less than about 15 mm. Methods of use of the catheter are also disclosed. The catheter of the present invention can be used to irradiate the site of an angioplasty procedure to prevent restenosis. It can also be used to treat other conditions in any vessel, lumen or cavity of the body.
Abstract:
An electroluminescent (EL) display is formed on a ceramic substrate having a front ceramic surface and a back ceramic surface. The ceramic substrate includes a metal core that provides structural support, electrical ground, and heat dissipation. EL cells (20) are mounted on the front ceramic surface (31) and driver circuits (10) for driving the EL cells (20) are mounted on the back ceramic surface (31). The driver circuits (10) are positioned directly behing said EL cells. Connectors (27) extend through said ceramic substrate and the EL cells to different driver circuits. By positioning the driver circuits close to the EL cells, the drive lines from the drivers to the EL cells are short which allows for high refresh rates and low resistance losses. Each of the driver circuits can drive one EL cell or a group of EL cells. EL display cells coupled to a cermet electrode can also be driven by a field emission device (110) or a low power electron beam (140).
Abstract:
Flat panel image sensor (10) is provided by combining photoconductive imaging electrodes of a vidicon with a two-dimensional array of cold cathode field emitters (14) commonly used for flat panel field emission display (FED) systems. The FED operates normally to emit electrons which are accelerated in prior art displays towards a luminescent phosphor to generate light output proportional to the cathode emission. Rather than accelerating towards a phosphor, electrons are accelerated towards a photoconductor layer (16) to replace charge removed from the layer by an incident radiation pattern directed at the photoconductor layer (16) through a layer of transparent, electrically-conducting material (17) which serves as a radiation window. The transparent, electrically-conducting layer (17) may be partitioned to reduce stray capacitance for large area sensors and the partitioned, electrically-conducting layer (17) permits a parallel readout mode of operation.
Abstract:
A matrix addressed diode flat panel display (820) including a diode pixel structure. The flat panel display includes a cathode assembly having a plurality of cathodes (210-280), each cathode including a plurality of cathode conductive material (440) and a layer of low effective work-function material (460) deposited over the cathode conductive material and an anode assembly having a plurality of anodes (290-292), each anode including a layer of anode conductive material (410) and a cathodoluminescent material (430) deposited over the anode conductive material, the anode assembly located proximate the cathode assembly to thereby receive the charged particle emissions from the cathode assembly. The display further includes means (100) for selectively varying field emissions between the plurality of corresponding light-emitting anodes and field-emission cathodes.
Abstract:
Flat display screen of the type comprising a cathode (1) provided with microtips (2) for electron bombardment associated with a grid (3), an anode (5) carrying phosphorescent elements (7) and a space (12) separating the electrodes. The screen comprises an insulating plate (13) defining said space (12) associated with means spacing apart the plate (13) from the anode (5), the plate (13) comprising holes (14) corresponding to the areas (17) provided with microtips (2).
Abstract:
A field emission cathode includes a layer of conductive material (14) and a layer of amorphic diamond film (12), functioning as a low effective work-function material, deposited over the conductive material to form emission sites. The emission sites each contain at least two sub-regions having differing electron affinities.
Abstract:
Provided is a field emission device. The field emission device includes an insulated cathode substrate facing an anode substrate, a plurality of cathodes arranged on the cathode substrate and separated from each other, and an emitter formed on each of the cathodes. In order to prevent accumulation of charges on an exposed area of the cathode substrate between the cathodes due to electrons discharged from the emitter, the distance between the cathodes is equal to or smaller than a first threshold value, and the distance from the emitter to the end of the cathode is equal to or greater than a second threshold value. Accordingly, in the field emission device in which a plurality of cathodes are separated from each other on the same plane, it is possible to prevent abnormal field emission and arc generation due to accumulated charges between the cathodes, thereby performing stable operation.