Abstract:
The present invention relates to a micromechanical device comprising a multi-layer micromechanical structure including only homogenous silicon material. The device layer comprises at least a rotor and at least two stators. At least some of the rotor and at least two stators are at least partially recessed to at least two different depths of recession from a first surface of the device layer and at least some of the rotor and at least two stators are at least partially recessed to at least two different depths of recession from a second surface of the device layer.
Abstract:
Methods for fabricating of high aspect ratio probes and deforming micropillars and nanopillars are described. Use of polymers in deforming nanopillars and micropillars is also described.
Abstract:
The present disclosure is directed to a device and its method of manufacture in which a protective region is formed below a suspended body. The protective region allows deep reactive ion etching of a bulk silicon body to form a MEMS device without encountering the various problems presented by damage to the silicon caused by backscattering of oxide during over etching periods of DRIE processes.
Abstract:
Methods for fabricating of high aspect ratio probes and deforming micropillars and nanopillars are described. Use of polymers in deforming nanopillars and micropillars is also described.
Abstract:
A MEMS (microelectromechanical systems) structure comprises a MEMS wafer. A MEMS wafer includes a cap with cavities bonded to a structural layer through a dielectric layer disposed between the cap and the structural layer. Unique configurations of MEMS devices and methods of providing such are set forth which provide for, in part, creating rounded, scalloped or chamfered MEMS profiles by shaping the etch mask photoresist reflow, by using a multi-step deep reactive ion etch (DRIE) with different etch characteristics, or by etching after DRIE.
Abstract:
Methods and apparatus for forming MEMS devices. An apparatus includes at least a portion of a semiconductor substrate having a first thickness and patterned to form a moveable mass; a moving sense electrode forming the first plate of a first capacitance; at least one anchor patterned from the semiconductor substrate and having a portion that forms the second plate of the first capacitance and spaced by a first gap from the first plate; a layer of semiconductor material of a second thickness patterned to form a first electrode forming a first plate of a second capacitance and further patterned to form a second electrode overlying the at least one anchor and forming a second plate spaced by a second gap that is less than the first gap; wherein a total capacitance is formed that is the sum of the first capacitance and the second capacitance. Methods are disclosed.
Abstract:
In a method of producing trench-like depressions (24) in the surface of a wafer (27), particularly a silicon wafer, by plasma etching, in which the depressions (24) are produced by alternate passivation and etching, each depression (24) in its final geometry is provided with a protective layer (30) of the polytetrafluoroethylene type.
Abstract:
Embodiments of the invention relate to a substrate etching method and apparatus. In one embodiment, a method for etching a substrate in a plasma etch reactor is provided that includes a) depositing a polymer on a substrate in an etch reactor, b) etching the substrate using a gas mixture including a fluorine-containing gas and oxygen in the etch reactor, c) etching a silicon-containing layer the substrate using a fluorine-containing gas without mixing oxygen in the etch reactor, and d) repeating a), b) and c) until an endpoint of a feature etched into the silicon-containing layer is reached.
Abstract:
Vias are formed in a substrate using an etch process that forms an undercut profile below the mask layer. The vias are coated with a conformal insulating layer and an etch process is applied to the structures to remove the insulating layer from horizontal surfaces while leaving the insulating layers on the vertical sidewalls of the vias. The top regions of the vias are protected during the etchback process by the undercut hardmask.
Abstract:
Methods for fabricating of high aspect ratio probes and deforming micropillars and nanopillars are described. Use of polymers in deforming nanopillars and micropillars is also described.