Abstract:
A process for fabricating a suspended microelectromechanical system (MEMS) structure comprising epitaxial semiconductor functional layers that are partially or completely suspended over a substrate. A sacrificial release layer and a functional device layer are formed on a substrate. The functional device layer is etched to form windows in the functional device layer defining an outline of a suspended MEMS device to be formed from the functional device layer. The sacrificial release layer is then etched with a selective release etchant to remove the sacrificial release layer underneath the functional layer in the area defined by the windows to form the suspended MEMS structure.
Abstract:
A photostructurable ceramic is processed using photostructuring process steps for embedding devices within a photostructurable ceramic volume, the devices may include one or more of chemical, mechanical, electronic, electromagnetic, optical, and acoustic devices, all made in part by creating device material within the ceramic or by disposing a device material through surface ports of the ceramic volume, with the devices being interconnected using internal connections and surface interfaces.
Abstract:
A method for producing a high-aspect-ratio microstructure includes: a photomask attachment step of attaching a photomask with a pattern groove to one surface of a transparent substrate; a photoresist attachment step of attaching a negative photoresist to one surface of the photomask; an exposure step of irradiating light toward the opposite surface of the transparent substrate from the photomask to cure a portion of the negative photoresist with the light irradiated on the negative photoresist through the pattern groove; and a developing step of removing an uncured portion of the negative photoresist while leaving the cured portion of the negative photoresist as a microstructure. With this method, it is possible to produce the high-aspect-ratio microstructure in an easy and cost-effective manner.
Abstract:
In a method for synthesizing polymeric microstructures, a monomer stream is flowed, at a selected flow rate, through a fluidic channel. At least one shaped pulse of illumination is projected to the monomer stream, defining in the monomer stream a shape of at least one microstructure corresponding to the illumination pulse shape while polymerizing that microstructure shape in the monomer stream by the illumination pulse.
Abstract:
A method of making a microstructure includes selectively activating a portion of a surface of a silicon-containing elastomer, contacting the activated portion with a substance, and bonding the activated portion and the substance, such that the activated portion of the surface and the substance in contact with the activated portion are irreversibly attached. The selective activation may be accomplished by positioning a mask on the surface of the silicon-containing elastomer, and irradiating the exposed portion with UV radiation.
Abstract:
A process for patterning dielectric layers of the type typically found in optical coatings in the context of MEMS manufacturing is disclosed. A dielectric coating is deposited over a device layer, which has or will be released, and patterned using a mask layer. In one example, the coating is etched using the mask layer as a protection layer. In another example, a lift-off process is shown. The primary advantage of photolithographic patterning of the dielectric layers in optical MEMS devices is that higher levels of consistency can be achieved in fabrication, such as size, location, and residual material stress.
Abstract:
A manufacturing method of a micro electro mechanical system (MEMS) device includes forming a buffer protection layer on a semiconductor structure, wherein the semiconductor structure includes a wafer, a MEMS membrane, and an isolation layer between the wafer and the MEMS membrane, and the buffer protection layer is located in a slit of the MEMS membrane and on a surface of the MEMS membrane facing away from the isolation layer; etching the wafer to form a cavity such that a portion of the isolation layer is exposed though the cavity; etching the portion of the isolation layer; and removing the buffer protection layer.
Abstract:
A MEM vibration sensor includes a substrate and a sensing-device. The substrate includes a first supporting-portion and a cavity. The sensing-device includes a first sensing-unit, a second sensing-unit, a first metal pad and a second metal pad. The first sensing-unit includes a second supporting-portion and a vibrating-portion. The second supporting-portion is located on the first supporting-portion and is connected to the first supporting-portion via a first dielectric material. The vibrating-portion is located on the cavity, and is connected with the second supporting-portion through an elastic connecting-portion. The second sensing-unit is located on the first sensing-unit and includes a sensing-portion and a third supporting-portion. The sensing-portion is located on the vibrating-portion and has a gap with the vibrating-portion. The third supporting-portion is located on the second supporting-portion, is connected to the sensing-portion, and is connected to the second supporting-portion through a second dielectric material.