Abstract:
A stacked die package for an electromechanical resonator system includes an electromechanical resonator die bonded or fixed to a control IC die for the electromechanical resonator by, for example, a thermally and/or electrically conductive epoxy. In various embodiments, the electromechanical resonator can be a micro-electromechanical system (MEMS) resonator or a nano-electromechanical system (NEMS) resonator. Certain packaging configurations that may include the chip that contains the electromechanical resonator and the control chip include chip-on-lead (COL), chip-on-paddle (COP), and chip-on-tape (COT) packages. The stacked die package may provide small package footprint and/or low package thickness, and low thermal resistance and a robust conductive path between the dice.
Abstract:
A stacked die package for an electromechanical resonator system includes an electromechanical resonator die bonded or fixed to a control IC die for the electromechanical resonator by, for example, a thermally and/or electrically conductive epoxy. In various embodiments, the electromechanical resonator can be a micro-electromechanical system (MEMS) resonator or a nano-electromechanical system (NEMS) resonator. Certain packaging configurations that may include the chip that contains the electromechanical resonator and the control chip include chip-on-lead (COL), chip-on-paddle (COP), and chip-on-tape (COT) packages. The stacked die package may provide small package footprint and/or low package thickness, and low thermal resistance and a robust conductive path between the dice.
Abstract:
A method of manufacturing an integrated circuit having a substrate comprising a plurality of components and a metallization stack over the components, the metallization stack comprising a first sensing element and a second sensing element adjacent to the first sensing element.
Abstract:
A piezoresistive sensing structure includes an assembly formed of a semiconductor material and including a cavity and a plurality of piezoresistive elements implanted into the assembly. The assembly includes a central mass coupled to a peripheral frame with a plurality of beams. Each beam is about 15 microns in width and includes one of the piezoresistive elements. The assembly may also include a first wafer having the cavity formed into a first side, and a second wafer with a plurality of beams formed in a first side. The second side of the second wafer is bonded to the first side of the first wafer.
Abstract:
A stacked die package for an electromechanical resonator system includes a chip that contains an electromechanical resonator bonded onto the control chip for the electromechanical resonator by a thermally and/or electrically conductive epoxy. In various embodiments, the electromechanical resonator can be a micro-electromechanical system (MEMS) resonator or a nano-electromechanical system (NEMS) resonator. Packaging configurations that may include the chip that contains the electromechanical resonator and the control chip include chip-on-lead (COL), chip-on-paddle (COP), and chip-on-tape (COT) packages. The stacked die package provides small package footprint and/or low package thickness, as well as low thermal resistance and a robust conductive path between the chip that contains the electromechanical resonator and the control chip.
Abstract:
A method and apparatus for rapid prototyping and fabrication of passivated microfluidic structures is disclosed. The method and apparatus may be used to fabricate and passivate the channel in one system.
Abstract:
The present disclosure pertains to our discovery of a particularly efficient method for etching a multi-part cavity in a substrate. The method provides for first etching a shaped opening, depositing a protective layer over at least a portion of the inner surface of the shaped opening, and then etching a shaped cavity directly beneath and in continuous communication with the shaped opening. The protective layer protects the etch profile of the shaped opening during etching of the shaped cavity, so that the shaped opening and the shaped cavity can be etched to have different shapes, if desired. In particular embodiments of the method of the invention, lateral etch barrier layers and/or implanted etch stops are also used to direct the etching process. The method of the invention can be applied to any application where it is necessary or desirable to provide a shaped opening and an underlying shaped cavity having varying shapes. The method is also useful whenever it is necessary to maintain tight control over the dimensions of the shaped opening.
Abstract:
A method for creating deep features in a Si-containing substrate for use in fabricating MEMS type devices is provided. The method includes first forming a thin Ni hardmask on a surface of a Si-containing substrate. The Ni hardmask is patterned using conventional photolithography and wet etching so as to expose at least one portion of the underlying Si-containing substrate. The at least one exposed portion of the Si-containing substrate, not containing the patterned hardmask, is then etched in a plasma that includes free radicals generated from a gaseous mixture of chlorine (Cl2), sulfur hexafluoride (SF6) and oxygen (O2). The interaction of the gas species in the plasma yields a rapid silicon etch rate that is highly selective to the Ni hardmask. The etch rate ratio of Si to Ni using the inventive method is greater than 250:1.
Abstract:
An integrated device including one or more device drivers and a diffractive light modulator monolithically coupled to the one or more driver circuits. The one or more driver circuits are configured to process received control signals and to transmit the processed control signals to the diffractive light modulator. A method of fabricating the integrated device preferably comprises fabricating a front-end portion for each of a plurality of transistors, isolating the front-end portions of the plurality of transistors, fabricating a front-end portion of a diffractive light modulator, isolating the front end portion of the diffractive light modulator, fabricating interconnects for the plurality of transistors, applying an open array mask and wet etch to access the diffractive light modulator, and fabricating a back-end portion of the diffractive light modulator, thereby monolithically coupling the diffractive light modulator and the plurality of transistors.
Abstract:
A method of manufacturing MEMS structures and devices that allows the fabrication of dielectric structures with improved etch selectivity and good electrical leakage characteristics. The dielectric structure includes a composite stack of silicon nitride sub-layers with a silicon-rich nitride sub-layer and a stoichiometric silicon nitride sub-layer at opposite ends of the stack. Alternatively, the dielectric structure includes a single silicon nitride layer providing a graded change in silicon content through the dielectric layer, from silicon-rich nitride to stoichiometric silicon nitride.