Abstract:
Embodiments include package structures having integrated waveguides to enable high data rate communication between package components. For example, a package structure includes a package substrate having an integrated waveguide, and first and second integrated circuit chips mounted to the package substrate. The first integrated circuit chip is coupled to the integrated waveguide using a first transmission line to waveguide transition, and the second integrated circuit chip is coupled to the integrated waveguide using a second transmission line to waveguide transition. The first and second integrated circuit chips are configured to communicate by transmitting signals using the integrated waveguide within the package carrier.
Abstract:
An electronic device according to the present disclosure includes a component, an electrode placed on the component, a conductor which includes a first conductor section, including an electrode contact surface in contact with the electrode, and two second conductor sections, electrically connected to two respective facing edges of the first conductor section to extend in respective directions away from the electrode and including respective inclined surfaces inclined in directions toward a central axis passing through a center of the electrode and perpendicular to the surface of the electrode, an insulator which is in contact with the two second conductor sections from sides opposite to the central axis and encloses the conductor and the electrode, and a case housing the component, the electrode, the conductor, and the insulator. A space without the insulator is defined between the two second conductor sections.
Abstract:
Embodiments include package structures having integrated waveguides to enable high data rate communication between package components. For example, a package structure includes a package substrate having an integrated waveguide, and first and second integrated circuit chips mounted to the package substrate. The first integrated circuit chip is coupled to the integrated waveguide using a first transmission line to waveguide transition, and the second integrated circuit chip is coupled to the integrated waveguide using a second transmission line to waveguide transition. The first and second integrated circuit chips are configured to communicate by transmitting signals using the integrated waveguide within the package carrier.
Abstract:
Embodiments include package structures having integrated waveguides to enable high data rate communication between package components. For example, a package structure includes a package substrate having an integrated waveguide, and first and second integrated circuit chips mounted to the package substrate. The first integrated circuit chip is coupled to the integrated waveguide using a first transmission line to waveguide transition, and the second integrated circuit chip is coupled to the integrated waveguide using a second transmission line to waveguide transition. The first and second integrated circuit chips are configured to communicate by transmitting signals using the integrated waveguide within the package carrier.
Abstract:
An apparatus is provided. There is a circuit assembly with a package substrate and an integrated circuit (IC). The package substrate has a microstrip line, and the IC is secured to the package substrate and is electrically coupled to the microstrip line. A circuit board is also secured to the package substrate. A dielectric waveguide is secured to the circuit board. The dielectric waveguide has a dielectric core that extends into a transition region located between the dielectric waveguide and the microstrip line, and the microstrip line is configured to form a communication link with the dielectric waveguide.
Abstract:
Integrated circuit packages with stripline structures are provided. An integrated circuit package substrate may include a core layer having top and bottom surfaces and dielectric layers formed on the top and bottom surfaces of the core layer. Stripline structures may be formed in at least some of the dielectric layers. A stripline trace may include signal routing conductors sandwiched between top and bottom ground planes. In particular, a dielectric layer may be formed between the signal conductors and the bottom ground plane to support the signal conductors, whereas a localized air region may be formed over the signal routing conductors separating the signal conductors from the top ground plane. If desired, the region above the signal routing conductors between the top ground plane and the signal routing conductors may be filled using other types of material having low loss and/or a dielectric constant that is frequency independent.
Abstract:
An electronic device according to the present disclosure includes a component, an electrode placed on the component, a conductor which includes a first conductor section, including an electrode contact surface in contact with the electrode, and two second conductor sections, electrically connected to two respective facing edges of the first conductor section to extend in respective directions away from the electrode and including respective inclined surfaces inclined in directions toward a central axis passing through a center of the electrode and perpendicular to the surface of the electrode, an insulator which is in contact with the two second conductor sections from sides opposite to the central axis and encloses the conductor and the electrode, and a case housing the component, the electrode, the conductor, and the insulator. A space without the insulator is defined between the two second conductor sections.
Abstract:
The present invention relates to a multi-layer substrate which can be used in a wireless signal transmission/reception apparatus, etc, a through-hole and a first waveguide and a second waveguide which are formed by conductive films enclosing the inner surface of the through-hole are formed on an upper substrate and a lower substrate of the multi-layer substrate, respectively, and an RF signal can be transmitted between an upper surface and a lower surface through the two waveguides. A process of manufacturing a multi-layer substrate by a Surface Mount Technology (SMT) is used, so that a waveguide passing through the multi-layer substrate can be precisely and easily formed.
Abstract:
An apparatus is provided. There is a circuit assembly with a package substrate and an integrated circuit (IC). The package substrate has a microstrip line, and the IC is secured to the package substrate and is electrically coupled to the microstrip line. A circuit board is also secured to the package substrate. A dielectric waveguide is secured to the circuit board. The dielectric waveguide has a dielectric core that extends into a transition region located between the dielectric waveguide and the microstrip line, and the microstrip line is configured to form a communication link with the dielectric waveguide.