Abstract:
To accommodate thermal stresses arising from different coefficients of thermal expansion (CTE) of a packaged or unpackaged die and a substrate, the package incorporates two or more different interconnect zones. A first interconnect zone, located in a central region of the die, employs a relatively stiff interconnect structure. A second interconnect zone, located near the periphery of the die, employs a relatively compliant interconnect structure. Additional interconnect zones, situated between the first and second interconnect zones and having interconnect structure with compliance qualities intermediate those of the first and second zones, can optionally be employed. In one embodiment, solder connections providing low electrical resistance are used in the first interconnect zone, and compliant connections, such as nanosprings, are used in the second interconnect zone. Methods of fabrication, as well as application of the package to an electronic assembly, an electronic system, and a data processing system are also described.
Abstract:
A light emitting diode (LED)has an integrated heat sink structure for removing heat from an LED junction and for dissipating heat from the junction to the ambient air. The anode and the cathode both either act as or are coupled to a thermally conductive material which acts as the heat sink. In one embodiment, the heat sink forms a mounting configuration that allows air to circulate around multiple surfaces to maximize heat dissipation. As a result, the LED junction temperature remains low, allowing the LED to by driven with higher currents and generate a higher light output without adverse temperature-related effects.
Abstract:
A high-frequency signal from a tape-shaped line section having a surface layer signal lead and surface layer GND lead disposed on both sides thereof is directly inputted to a semiconductor chip via a signal surface layer wiring of a package substrate and through solder bump electrodes. Alternatively, a high-frequency signal from the semiconductor chip is outputted to the outside via the tape-shaped line section in reverse. Owing to the transmission of the high-frequency signal by only a microstrip line at the whole surface layer of the package substrate, the high-frequency signal can be transmitted by only the microstrip line at the surface layer without through vias or the like. Accordingly, the high-frequency signal can be transmitted without a loss in frequency characteristic, and a high-quality high-frequency signal can be transmitted with a reduction in loss at high-frequency transmission.
Abstract:
A electronic assembly is disclosed and claimed. The electronic assembly includes a first substrate and a second substrate. A plurality of power connections are coupled between the first substrate and the second substrate and a multiplicity of signal connections separate from the plurality of power connections are also coupled between the first substrate and the second substrate. Each of the plurality of power connections have a substantially different size and shape compared to each of the multiplicity of signal connections.
Abstract:
A thermistor with positive resistance-to-temperature characteristic used in a overcurrent protection circuit has electrodes on mutually opposite main surfaces and is mounted to a substrate having electrically conductive members such that deterioration of its voltage resistance due to heat emission can be controlled. A spacer with smaller thermal conductivity than the substrate and penetrated by a conductor piece with a small cross-sectional area is inserted between solder materials connecting to one of the thermistor electrodes. The other electrode is contacted by an elongated connecting member through its sectional surface transverse to its longitudinal direction such that the cross-sectional area of electrical conduction is reduced.
Abstract:
A surface mount package is composed of a package body and first and second terminals. The package body has first and second surfaces intersecting with each other. Also, the package body has an installing portion for an element to be installed. The first terminal is connected to the first surface, and the second terminal is connected to the second surface.
Abstract:
The electronic device is provide that includes a body having an underside; a plurality of conducting members for transferring electronic signals; and at least two alignment pins mounted perpendicularly on the underside. Each of the alignment pins has a flexible portion that is more easily bendable than the other portions.
Abstract:
A Tape-Automated-Bonding (TAB) package includes a resilient polyimide layer that supports a metal leadframe. A microelectronic circuit die is mounted in a hole in the polyimide layer and interconnected with inner leads of the leadframe. The TAB package is adhered to a support member having spacers that abut against the surface of a printed circuit board (PCB) on which the package is to be mounted and provide a predetermined spacing between the leadframe and the surface. Outer leads that protrude from the leadframe are bent into a shape so as extend, in their free state, toward the surface at least as far as the spacers. The package and support member assembly is placed on the PCB surface, and the combination of the weight of the assembly, the resilience of the leads and the preset standoff height enable the leads to resiliently deform so that the spacers abut against the surface and the leads conformably engage with the surface for soldering or other ohmic connection to conjugate bonding pads on the surface. The support member can be formed with lead retainers around which the leads extend to form loops that resiliently and conformably engage with the surface as the assembly is lowered thereon. The support member maintains coplanarity, adds weight to the package, pre-sets the standoff to protect the formed outer leads during surface mounting and enables the package to be shipped without a separate carrier.