Abstract:
A high-frequency signal transmission line includes an element, a linear signal line provided at the element and including a first end and a second end, and at least one ground conductor provided at the element and extending along the signal line. The element includes stacked insulating layers. The ground conductor is positioned opposite to the signal line with the insulating layer positioned therebetween. The ground conductor is a contiguous conductor. The signal line, the ground conductor, and the element generate a characteristic impedance. The signal line includes a first section and a second section. The first section is an uninterrupted section generating a characteristic impedance greater than or equal to a first characteristic impedance at the first end and including the first end. The second section generates a characteristic impedance less than the first characteristic impedance and is adjacent to the first section. The second section is longer than the first section. The signal line is wider in the second section than in the first section.
Abstract:
An exemplary bridging inter-connector establishes electrical connections between conductors on a PCB and aligned conductors on a first board mounted to the PCB. A flexible non-conductive sheet covers at least a portion of these conductors. Separated conductive strips on the sheet that are dimensioned to align with and engage at least a portion of both the aligned conductors. A thin film of a bonding agent is disposed on the separated conductive strips and located to engage at least a portion of both aligned conductors to form a conductive connection.
Abstract:
A dielectric element assembly includes a plurality of dielectric layers stacked on each other in a direction of lamination and extends in an x-axis direction. A signal line is provided in the dielectric element assembly and extends in the x-axis direction. A reference ground conductor is provided on a positive side in a z-axis direction relative to the signal line. An auxiliary ground conductor is provided on a negative side in the z-axis direction relative to the signal line. Via-hole conductors connect the reference ground conductor and the auxiliary ground conductor and are provided in the dielectric element assembly on the negative side relative to the center in a y-axis direction. A portion of the signal line in a section which includes the via-hole conductors is positioned on the positive side in the y-axis direction relative to another portion of the signal line in a section which does not include the via-hole conductors.
Abstract:
A dielectric element assembly includes a plurality of dielectric layers stacked on each other in a direction of lamination and extends in an x-axis direction. A signal line is provided in the dielectric element assembly and extends in the x-axis direction. A reference ground conductor is provided on a positive side in a z-axis direction relative to the signal line. An auxiliary ground conductor is provided on a negative side in the z-axis direction relative to the signal line. Via-hole conductors connect the reference ground conductor and the auxiliary ground conductor and are provided in the dielectric element assembly on the negative side relative to the center in a y-axis direction. A portion of the signal line in a section which includes the via-hole conductors is positioned on the positive side in the y-axis direction relative to another portion of the signal line in a section which does not include the via-hole conductors.
Abstract:
A touch window includes a substrate, a sensing electrode on the substrate, a wire electrically connected with the sensing electrode, a ground wire adjacent to the wire, and a printed circuit board connected with the wire and the ground wire. An overlap length between the ground wire and the printed circuit board is longer than an overlap length between the wire and the printed circuit board. Alternatively or simultaneously, a line width of the ground wire is wider than an interval or gap between the wire parallel to the printed circuit.
Abstract:
Methods and apparatus for controlling an equivalent-series resistance (ESR) of a capacitor are provided. An exemplary apparatus includes a substrate having a land side, the capacitor mounted on the land side of the substrate and having both the ESR and terminals, a resistive pattern coupled to the terminals, and a plurality of vias coupled to the resistive pattern. The resistive pattern is configured to control the ESR. The resistive pattern can be formed of a resistive paste. The resistive pattern can be formed in a substantially semicircular shape having an arc ranging from substantially 45 degrees to substantially 135 degrees. The capacitor can be a surface mount device. The resistive pattern can be formed in a shape of a land-side capacitor mounting pad, a via, or both.
Abstract:
A stretchable device for transmitting signal between end points, such as a sensor and electronic unit, includes a conductive element, which is coupled with a supporting structure by introducing the conductive element successively through the thickness of the supporting structure to the first and second side of the supporting structure, thereby providing a corrugated structure for the conductive element, which is configured to be straighten out at least partially during stretching the device in its longitudinal direction. The conductive element is coupled with the supporting structure between first and second outer layers thereby providing the stretchable device.
Abstract:
A flexible flat circuit includes a pair of insulation sheets, and a plurality of conductors that are held between and covered with the pair of insulation sheets in a state that the plurality of conductors are separated to each other. Among from the plurality of conductors, at least conductors with different current capacities are different in thickness to each other.
Abstract:
An imprinted micro-structure includes a substrate having a first layer in relation thereto. First, second, and third micro-channels are imprinted in the first layer and have first, second, and third micro-wires respectively located therein. A second layer is adjacent to and in contact with the first layer. Imprinted first and second connecting micro-channels including first and second connecting micro-wires are in contact with the first and second micro-wires respectively and are isolated from the third micro-wire. A third layer is adjacent to and in contact with the second layer and has an imprinted bridge micro-channel with a bridge micro-wire contacting the first and second connecting micro-wires and separate from the third micro-wire so that the first and second micro-wires are electrically connected and electrically isolated from the third micro-wire.
Abstract:
A semiconductor device includes a semiconductor chip, a plurality of external terminals, and a board. The board includes a first main surface in which a plurality of first electrodes electrically connected to the semiconductor chip are formed, a second main surface in which a plurality of second electrodes electrically connected to the plurality of external terminals are formed, and a plurality of interconnect layers, provided between the first main surface and the second main surface, for forming a plurality of signal paths that electrically connect the first electrode and the second electrode corresponding thereto. The interconnect layer includes a plurality of metal members which are dispersedly disposed at a distance shorter than an electromagnetic wavelength equivalent to a signal band of a signal supplied to the signal path, in the vicinity of a portion in which a structure of an interconnect for forming the signal path is changed.