Abstract:
A printed wiring board device (10) includes circuit parts (20) which are mounted on a wiring board and constitute parts of a circuit in the printed wiring board device (10). Pads (22) are provided on the wiring board around the circumference of the circuit parts (20), the pads (22) being electrically isolated from the circuit. Heat-absorbing dummy parts (30) are mounted on the pads (22), and the dummy parts (30) absorb heat from the circuit parts (20) through the pads (22) during reflow soldering.
Abstract:
Disclosed is a foolproof polarity indication of poled electronics parts or devices to be given to a printed circuit board to assure that poled electronics parts and/or devices be correctly mounted in respect of their polarities to meet occasional requirements dependent on different specifications. Each pair of terminal holes (1a,1b) are allotted to a given poled electronics part or device. Two symbols (2a,2b) representative of such electronics part or device are arranged side by side on either side of the line drawn from one to the other terminal hole. The poled electronics part or device symbols are of reversed polarities. This dual symbol arrangement is effective to draw workers' attention in mounting electrode components in terms of their polarities. When extra components (S) or dummy ones are combined with such a poled component, they are encircled by a boundary line (6), thereby showing the correct polarity direction of the poled component in respect of whether it is enclosed or not.
Abstract:
The invention relates to a module component having chip components buried in a circuit board, and a method of manufacturing the same, and more specifically it relates to a module component capable of obtaining desired circuit characteristics and functions stably if the size of the component is reduced, being produced very efficiently, and suited to machine mounting, and a method of manufacturing the same. According to the invention, since a desired circuit is composed by disposing a specific number of chip components according to a specified rule, it is not necessary to heat the buried chip components at high temperature when forming a module, chip components are obtained in specified values, and the circuit characteristics, functions, and dimensional precision are stably obtained exactly as designed, and moreover since the chip components are disposed according to a specified rule, it is easy to automate insertion of chip components and increase its operation speed, even if the size of the chip components is reduced, and the circuit composition may be flexibly and easily changed only by changing the inserting position and type of chip components.
Abstract:
La présente invention concerne un dispositif comprenant des composants électroniques montés en surface, caractérisé par le fait qu'il comprend un élément (305, 405) en matériau diélectrique placé entre une connexion (304) d'un composant monté en surface (302) et un élément radiateur, pour assurer la fonction de shunt thermique entre ceux-ci.
Abstract:
A foldable electronic device includes a display including a first and second areas; a first and second housings; a hinge structure foldably connecting the first housing and the second housing to each other on a folding axis; a flexible printed circuit board (FPCB) extending across the folding axis from a first space between the first housing and the display to a second space between the second housing and the display and including a first bending portion and a second bending portion; a sensor configured to identify an impedance in the FPCB; and a processor configured to identify a folding angle between the first housing and the second housing based on the impedance. The first bending portion includes a first sensing pattern part including a first pattern forming a first electrical path and a second pattern forming a second electrical path.
Abstract:
A semiconductor substrate includes: 1) a first dielectric structure having a first surface and a second surface opposite the first surface; 2) a second dielectric structure having a third surface and a fourth surface opposite the third surface, wherein the fourth surface faces the first surface, the second dielectric structure defining a through hole extending from the third surface to the fourth surface, wherein a cavity is defined by the through hole and the first dielectric structure; 3) a first patterned conductive layer, disposed on the first surface of the first dielectric structure; and 4) a second patterned conductive layer, disposed on the second surface of the first dielectric structure and including at least one conductive trace. The first dielectric structure defines at least one opening to expose a portion of the second patterned conductive layer.
Abstract:
Disclosed is a method for manufacturing a substrate gap supporter. The method includes: a first step of forming metal foils on both sides of an insulating plate; a second step of etching the metal foils to expose the insulating plate so that a plurality of stripes are arranged on both sides of the insulating plate in parallel at constant intervals, wherein the stripes expose the insulating plate at constant widths; and a third step of cutting in direction in parallel with the stripes and in direction in vertical with the stripes along one edges of the stripes to complete the gap supporter.
Abstract:
An array circuit board 11B includes a glass substrate, an IC chip 20, two ACFs 30, and a resin film 32. The IC chip 20 is disposed on the glass substrate. The ACFs 30 are disposed between the glass substrate and the IC chip 20 for electrically connecting the glass substrate and the IC chip 20 together. The ACFs 30 are separated from each other. The resin film 32 is made of resin material having cure shrinkage smaller than the ACFs 30 and disposed to fill a gap between the ACFs 30 adjacent to each other between the glass substrate and the IC chip 20.
Abstract:
The present disclosure relates to a semiconductor substrate, a semiconductor module and a method for manufacturing the same. The semiconductor substrate includes a first dielectric structure, a second dielectric structure, a first patterned conductive layer and a second patterned conductive layer. The first dielectric structure has a first surface and a second surface opposite the first surface. The second dielectric structure has a third surface and a fourth surface opposite the third surface, where the fourth surface is adjacent to the first surface. The second dielectric structure defines a through hole extending from the third surface to the fourth surface. A cavity is defined by the through hole and the first dielectric structure. The first patterned conductive layer is disposed on the first surface of the first dielectric structure. The second patterned conductive layer is disposed on the second surface of the first dielectric structure.