Abstract:
A microelectromechanical (MEMS) device has a substrate, and at least one, generally planar moving element, such as an absorber or a mirror, disposed in parallel to the surface of the substrate. An actuator is operatively engageable with the moving element for selectively actuating the moving element between a series of successive, closely spaced positions in a plane horizontal to the surface of the substrate. The MEMS device may be effectively used as a variable attenuator and beam splitter. Various different actuators can be used. Preferably, the device is fabricated using a surface micromachining process.
Abstract:
A bistable micromechanical switch that includes a substrate, at least two anchor points formed on the substrate, and a beam structure that includes a two-material beam attached to at least two anchor points. The two-material beam has a first portion, a second portion and a center portion. The first portion of the two-material beam is formed from a first layer of a first material and a second layer of a second material such that the first layer of the first portion is proximate to the surface of the substrate and the second layer of the first portion is remote from the surface of the substrate. The first material has a first coefficient of thermal expansion and the second material has a second coefficient of thermal expansion such that the second coefficient of thermal expansion is greater than the first coefficient of thermal expansion. The second portion of the two-material beam is formed from a first layer of the second material and a second layer of the first material such that the first layer of the second portion is proximate to the surface of the substrate and the second layer of the second portion is remote from the surface of the substrate. The beam structure has a first and a second stable state such that the center portion of the beam structure is deflected toward the surface of the substrate for the first stable state and is deflected away from the surface of the substrate for the second stable state.
Abstract:
L'invention a pour objet une structure mécanique comprenant un empilement comportant un substrat actif (10) et au moins un actionneur (20) adapté pour générer des vibrations au niveau dudit substrat actif, ledit empilement comprenant une structure élémentaire d'amplification desdites vibrations (30) : - disposée entre ledit actionneur et ledit substrat actif, la structure étant adaptée pour transmettre et amplifier lesdites vibrations et; - comprenant au moins une tranchée (Ti), située entre ledit actionneur et ledit substrat actif. L'invention a aussi pour objet un procédé de fabrication de ladite structure comprenant l'utilisation d'un substrat temporaire.
Abstract:
Providing a method for manufacturing a thermal bimorph diaphragm and a MEMS speaker with thermal bimorphs, wherein the method comprises the steps of: thermally oxidizing a substrate (1) to obtain an insulating layer (2) thereon and providing a metal layer (3) on the insulating layer (2); providing a sacrificial layer (4) on the metal layer (3); providing a first thermal bimorph layer (5) on the sacrificial layer (4); providing a second thermal bimorph layer (6) on the first thermal bimorph layer (5); providing a metal connecting layer (7) at the positions on the metal layer (3) where the sacrificial layer (4) is not provided; forming corresponding back holes (16) on the substrate (1) and the insulating layer (2) and releasing the sacrificial layer (4); forming a warped thermal bimorph diaphragm with the first thermal bimorph layer (5) and the second thermal bimorph layer (6) after the sacrificial layer (4) is released. With the MEMS speaker with thermal bimorphs, the problems of high production cost, complicated wafer process and limitations on sound performance improvements are solved.
Abstract:
Provided are a method for manufacturing a flexible nanogenerator and a flexible nanogenerator manufactured thereby. The method for manufacturing the flexible nanogenerator of the present invention includes the steps of: laminating a piezoelectric element layer having a piezoelectric material layer on a sacrificial substrate; crystallizing the piezoelectric element layer by thermally processing the piezoelectric element layer at a high temperature; separating unit piezoelectric elements from the sacrificial substrate by removing the sacrificial substrate; and transferring the separated unit piezoelectric elements onto a flexible substrate. The method for manufacturing the flexible nanogenerator and the flexible nanogenerator manufactured thereby of the present invention can continuously produce electric power from the movement of a human body and the like by producing electric power according to the bending of the substrate.
Abstract:
The method of fabricating devices for microelectromechanical systems (MEMS) with electrical components in their sidewalls is applicable for the production of microstructures with various electrical and mechanical properties that can be used for sensing in different technical areas. The method consists of three stages and through numerous repetitions of processes of creation of protective layers, photolithographical patterning, consecutive etching processes and doping via high temperature ion diffusion performed over non-deformable semiconductor basic structures, for example monocrystalline Silicon basic structures, it gives opportunity of building of electrical components in the sidewalls of MEMS devices. The electrical components so obtained can have equal or different parameters and can be disposed in parts of or the whole sidewalls of such devices. With MEMS devices realized according to the claimed method measurements with considerably increased accuracy, precision and sensitivity can be made.
Abstract:
The invention relates to a micromechanical component (10) comprising a support (12) having a recess (14) on a surface of the support (12); a membrane (16) which covers the recess (14) to at least some degree; at least one active element (24) with voltage connections arranged on the membrane (16); the active element (24) being designed to vary its spatial extension when a voltage is applied to the active element (24) and to deform the membrane (16); and a microelement (22), arranged on the membrane (16), which can be adjusted by way of a deformation of the membrane (16) due to the application of voltage to the active element (24). The invention further relates to a method for producing a micromechanical component (10) and to a method for operating a micromechanical component (10).
Abstract:
Die Erfindung betrifft ein Herstellungsverfahren für ein mikromechanisches Bauteil (10) mit den Schritten: Bilden einer ersten Elektrodeneinheit (14) in einer ersten Stellung zu einem Grundsubstrat (16); Bilden eines Stützelements (22) mit einer ersten Untereinheit (23,28,30) mit einer ersten EigenSpannung und einer zweiten Untereinheit (23,28,30) mit einer von der ersten Eigenspannung abweichenden zweiten Eigenspannung, wobei das Stützelement (22) an einem ersten Ende an der ersten Elektrodeneinheit (14) und an einem zweiten Ende an dem Grundsubstrat (16) befestigt ist; und Biegen des Stützelements (22) aufgrund einer Differenz zwischen der ersten Eigenspannung und der zweiten Eigenspannung, wobei aufgrund des Biegens des Stützelements (22) die erste Elektrodeneinheit (14) aus der ersten Stellung zu dem Grundsubstrat (16) in eine zweite Stellung zu dem Grundsubstrat (16) verstellt wird. Des Weiteren betrifft die Erfindung ein Mikromechanisches Bauteil (10).
Abstract:
Es wird eine Vorrichtung, insbesondere ein Mikrosystem, beschrieben, die eine Einrichtung zur Energieumwandlung umfasst. Die Einrichtung zur Energieumwandlung weist eine pie- zoelektrische, mechanische schwingfähige Membranstruktur (3) zur Umwandlung von mechanischer Energie in elektrische Energie und/oder umgekehrt auf, wobei die Membranstruktur (3) in einer Umgebung verkapselt angeordnet ist, die einen vorbestimmten Druck aufweist, der insbesondere geringer als ein isostatischer Druck ist.