Abstract:
[Object] Provided are a connection method and an electronic device, in which the manufacturing process can be simplified, and a connection structure using an adhesive can be produced at low cost. [Solution] A connection method according to the present invention includes a step (a1) of preparing base materials 10 and 21 each including an electrode for connection using an adhesive, a step (b1) of covering electrodes 12 and 22 for connection using an adhesive with organic films 15 configured to prevent oxidation, the electrodes 12 and 22 being located on the base materials, a step (c1) of removing or thinning the organic films, and after the step (c1), a step (d1) of bonding the electrodes for connection using an adhesive to each other with an adhesive 30 mainly containing a thermosetting resin to establish electrical connection.
Abstract:
Embodiments described herein provide for a composition of voltage switchable dielectric (VSD) material that includes a concentration of modified high-aspect ratio (HAR) particles. In an embodiment, at least a portion of the concentration includes HAR particles are surface-modified to provide core-shell HAR particles. As an alternative or addition, a portion of the concentration includes HAR particles that are surface-modified to have activated surfaces.
Abstract:
Embodiments described herein provide for a composition of voltage switchable dielectric (VSD) material that includes a concentration of modified high-aspect ratio (HAR) particles. In an embodiment, at least a portion of the concentration includes HAR particles are surface-modified to provide core-shell HAR particles. As an alternative or addition, a portion of the concentration includes HAR particles that are surface-modified to have activated surfaces.
Abstract:
An electronic assembly comprising a first electronic element, a second electronic element, and a durably flexible bond therebetween. The bond comprises an anisotropic conductive adhesive that includes elongated electrically conductive particles. The bond provides at least one electrical pathway between the first electronic element and the second electronic element through an elongated contact region. This bond is functionally maintained for at least about 200 flexes.
Abstract:
A metal powder composed of nickel or an alloy thereof and used for a producing a conductivity-afforded material is provided, in which particles are integrated in particle aggregates having a chain structure. The average diameter of the particle aggregates is in the range of 30 to 200 nm, and the average length thereof is in the range of 0.5 to 50 µm. The increased conductivity bestowing effect can be obtained by the addition of a small amount of the metal powder.
Abstract:
The present invention provides glass fiber strands impregnated with non-abrasive solid particles which provide interstitial spaces of at least 3 micrometers between adjacent fibers within a strand which are useful for reinforcing composites.
Abstract:
The invention aims at providing a resin composition for electronic parts which is in great demand as a circuit board material for electric and electronic equipments, and which has a low dielectric constant, low dielectric dissipation factor and a thermal resistance. This resin consists of a thermoplastic resin or a thermosetting resin, and wollastonite or zonotolite, fibrous material containing CaO.SiO2 as a main component, mixed as reinforcing fiber with the resin at a mixing ratio of 5-60 % based on the total weight of the resin and fiber.
Abstract:
A resin composition for printed circuit board comprising:
(A) 30 - 90% by weight of a liquid crystal polyester, (B) 3 - 50% by weight of an inorganic fibrous or acicular material having an average diameter of 15 µm or below and an average length of 200 µm or below, and (C) 3 - 30% by weight of an alkaline earth metal carbonate.
Abstract:
Provided is a silicon nitride substrate capable of enhancing the bond strength when a member made of a metal is bonded to the substrate, and a circuit substrate and an electronic device capable of improving reliability by using the silicon nitride substrate. The silicon nitride substrate 1 comprises a substrate 1a comprising a silicon nitride sintered body, and a plurality of granular bodies 1b containing silicon and integrated to a principal surface of the substrate 1a, wherein a plurality of needle crystals 1c or column crystals 1d comprising mainly silicon nitride are extended from a portion of the granular bodies 1b. A brazing material is applied to a principal surface of the substrate 1a, and a circuit member and a heat radiation member are arranged on the applied brazing material, and bonded by heating. Because of a plurality of granular bodies 1b integrated to the principal surface of the substrate 1a, and a plurality of the needle crystals 1c or the column crystals 1d extended from a portion of the granular bodies 1b, a high anchor effect is produced so that the circuit member and the heat radiation member are firmly bonded to the silicon nitride substrate 1.