Abstract:
Silicon carbide single crystals are prepared by (1) reacting silica gel, silicic acid or silicon dioxide with an inorganic base and a multifunctional alcohol or a multifunctional phenol to produce a carbon-containing chemically activated silicon compound, (2) mixing the activated silicon compound with carbon black or graphite and (3) heating the mixture to 1300° to 1700°C under a non-oxidizing atmosphere.
Abstract:
The present invention relates to a novel process for forming metal matrix composite bodies. Particularly, a suitable matrix metal (33), typically in a molten state, is in contact with a suitable filler material (31) or preform in the presence of a suitable reactive atmosphere in an impermeable container (32), at least at some point during the process, which permits a reaction to occur between the reactive atmosphere and the molten matrix metal (33) and /or filler material (31) or preform and/or impermeable container (32), thereby causing molten matrix metal (33) to infiltrate the filler material (31) or preform due to, at least in part, the creation of a self-generated vacuum. Such self-generated vacuum infiltration occurs without the application of any external pressure or vacuum.
Abstract:
The present invention relates to the formation of a macrocomposite body by spontaneously infiltrating a permeable mass of filler material or a preform (4) with molten matrix metal (2) and bonding the spontaneously infiltrated material to at least one second material such as a ceramic or ceramic containing body and/or a metal or metal containing body. Particularly, an infiltration enhancer and/or infiltration enhancer precursor and/or infiltrating atmosphere are in communication with a filler material or a preform (4), at least at some point during the process, which permits molten matrix metal (2) to spontaneously infiltrate the filler material or preform (4). Moreover, prior to infiltration, the filler material or preform (4) is placed into contact with at least a portion of a second material such that after infiltration of the filler material or preform (4), the infiltrated material is bonded to the second material, thereby forming a macrocomposite body.
Abstract:
The present invention relates to a novel process for forming macrocomposite bodies. Particularly, a suitable matrix metal (33), typically in a molten state, is in contact with a suitable mass of filler material or preform (31) located adjacent to, or in contact with, at least one second material in the presence of a suitable reactive atmosphere in an impermeable container (32), at least at some point during the process, which permits a reaction to occur between the reactive atmosphere and the molten matrix metal (33) and/or mass of filler material or preform (31) and/or impermeable container (32), thereby causing molten matrix metal (33) to infiltrate the mass of filler material or preform (31) due to, at least in part, the creation of a self-generated vacuum. Such self-generated vacuum infiltration occurs without the application of any external pressure or vacuum. The molten matrix metal (33) infiltrates the mass of filler material or preform (31) to such an extent that the molten matrix metal (33) contacts at least a portion of the at least one second material. Upon cooling the matrix metal (33) to a temperature below the melting point of the matrix metal, a macrocomposite body is formed comprising a metal matrix composite body bonded to at least a portion of the at least one second material.
Abstract:
The present invention relates to the formation of a macrocomposite body by spontaneously infiltrating a permeable mass of filler material or a preform (4) with molten matrix metal (2) and bonding the spontaneously infiltrated material to at least one second material such as a ceramic or ceramic containing body and/or a metal or metal containing body. Particularly, an infiltration enhancer and/or infiltration enhancer precursor and/or infiltrating atmosphere are in communication with a filler material or a preform (4), at least at some point during the process, which permits molten matrix metal (2) to spontaneously infiltrate the filler material or preform (4). Moreover, prior to infiltration, the filler material or preform (4) is placed into contact with at least a portion of a second material such that after infiltration of the filler material or preform (4), the infiltrated material is bonded to the second material, thereby forming a macrocomposite body.