Abstract:
A copper foil composite comprising a copper foil and a resin layer laminated thereon, satisfying an equation 1: (f 3 x t 3 )/(f 2 x t 2 ) => 1 wherein t 2 (mm) is a thickness of the copper foil, f 2 (MPa) is a stress of the copper foil under tensile strain of 4%, t 3 (mm) is a thickness of the resin layer, f 3 (MPa) is a stress of the resin layer under tensile strain of 4%, and an equation 2:1
Abstract:
Disclosed herein is a display apparatus which may be selectively used in a flat state or a curved state. The display apparatus includes a display module that displays an image and is provided to be bent, and a bending device that is provided to enable the display module to be transformed into a flat state or a curved state. Here, the bending device includes a frame that is provided at a rear side of the display module and a hinge unit that connects between the frames and is provided to enable curvature of the frame to vary by torque.
Abstract:
Disclosed are a touch window and a touch device including the same. The touch window includes first and second areas, wherein the second area is bentable from the first area.
Abstract:
The present disclosure describes a closely spaced array of penetrating electrodes. In some implementations, the electrodes of the array are spaced less than 50 μm apart. The present disclosure also describes methods for manufacturing the closely spaced array of penetrating electrodes. In some implementations, each row of electrode of the array is manufactured in-plane and then coupled to other rows of electrodes to form an array.
Abstract:
The present disclosure provides a display substrate. The display substrate includes a substrate having a display area and a border area surrounding the display area; a non-black photo-resist layer formed on the substrate in the border area; and a black photo-resist layer formed on the non-black photo-resist layer. The non-black photo-resist layer interfaces the black photo-resist layer with a diffusion structure.
Abstract:
Embodiments of the present disclosure are directed towards an integrated circuit (IC) package. In embodiments, an integrated circuit (IC) package may include a flexible substrate (102). The flexible substrate (102) may have a plurality of dies (104 -112) coupled therewith. The IC package may include a first encapsulation material (116-120), having a first rigidity, disposed on the flexible substrate (102) to at least partially encapsulate each die of the plurality dies (104 -112). The IC package may further include a second encapsulation material (122), having a second rigidity, disposed on the flexible substrate (102). In embodiments, the second rigidity and the first rigidity are different from one another. Other embodiments may be described and/or claimed.
Abstract:
A portable electronic device commonly includes one or more batteries. Further, a portable electronic device may be manufactured using one or more overmolding techniques to achieve certain aesthetic and/or mechanical characteristics. Batteries within the portable electronic device may be overmolded by using a covering, wherein the covering includes a protective layer such that the batteries are not exposed to the high temperatures and high pressures associated with an overmolding process which may be in excess of temperature and pressure thresholds associated with the batteries.
Abstract:
A copper foil composite comprising a copper foil and a resin layer laminated thereon, satisfying an equation 1: (f 3 x t 3 )/(f 2 x t 2 ) => 1 wherein t 2 (mm) is a thickness of the copper foil, f 2 (MPa) is a stress of the copper foil under tensile strain of 4%, t 3 (mm) is a thickness of the resin layer, f 3 (MPa) is a stress of the resin layer under tensile strain of 4%, and an equation 2:1