Abstract:
A method for forming a film pattern by disposing a functional fluid on a substrate, includes: forming a partition wall that includes a first opening that corresponds to a first film pattern and a second opening that corresponds to a second film pattern; and disposing a droplet of the functional fluid into the first opening, so that the functional fluid is disposed into the second opening by a self-flow of the functional fluid; wherein: the first film pattern is linear; the second film pattern is narrower than the first film pattern, and is connected to the first film pattern at a rear edge thereof; and a front edge of the second film pattern has a missing part in which a corner of a rectangular contour is missing.
Abstract:
A differential transmission line includes: a substrate; a ground conductor layer; and a first and a second signal conductor disposed in parallel to each other on the substrate. The first signal conductor and the ground conductor layer compose a first transmission line, whereas the second signal conductor and the ground conductor layer compose a second transmission line. The first transmission line and the second transmission line compose a differential transmission line. The differential transmission line includes a curved region, with a straight region being connected to each end of the curved region. In the ground conductor layer in the curved region, a plurality of slots orthogonal to a local transmission direction of signals in the curved region are formed, and the slots are connected to one another on the inner side of the curvature.
Abstract:
An integrated circuit chip module includes a first integrated circuit chip including a first power source pad for a first power voltage and an adjacent second power source pad for a second power voltage, the first power voltage being higher than the second power voltage, a second integrated circuit chip including a third power source pad for the first power voltage and an adjacent fourth power source pad for the second power voltage, and a wiring board including a first power source wire electrically connected to the first power source pad, a second power source wire electrically connected to the second power source pad, a third power source wire electrically connected to the third power source pad, and a fourth power source wire electrically connected to the fourth power source pad. Distance between the first and second power source wires is shorter than distance between the first or second power source wires and the third or fourth power source wires, and distance between the third and fourth power source wires is shorter than distance between the first or second power source wires and the third or fourth power source wires.
Abstract:
A differential transmission line includes: a substrate; a ground conductor layer; and a first and a second signal conductor disposed in parallel to each other on the substrate. The first signal conductor and the ground conductor layer compose a first transmission line, whereas the second signal conductor and the ground conductor layer compose a second transmission line. The first transmission line and the second transmission line compose a differential transmission line. The differential transmission line includes a curved region, with a straight region being connected to each end of the curved region. In the ground conductor layer in the curved region, a plurality of slots orthogonal to a local transmission direction of signals in the curved region are formed, and the slots are connected to one another on the inner side of the curvature.
Abstract:
On the circuit surfaces of integrated circuit chips, there are adjacently laid out a power source pad for a power source wire at a plus voltage side and a power source pad for a power source wire at a minus voltage side. On a single-surface printed wiring board, a first set of two power source wires and a second set of two power source wires are flip-chip mounted with two power source pads of the integrated circuit chips respectively. The first and second sets of the power source wires are formed substantially in parallel with each other, by maintaining substantially constant wire widths and substantially constant wire interval. Near the outer periphery of the printed wiring board, the first and second sets of the power source wires are bent smoothly to follow the periphery.
Abstract:
Improvement in the quality of photoresist images has been achieved. The data file in which the full description of the photoresist image, including Optical Proximity Corrections, has been stored is split into two subfiles. The split is made on the basis of separating cell descriptions (where the density of lines is high) from peripheral area descriptions (where lines tend to be isolated). A suitable bias in the form of a small increase or decrease (as appropriate) of all dimensions in the subfile is then applied. After the application of bias, the subfiles are merged back into a single data file and processing proceeds as usual.
Abstract:
The radiation noise suppression effect is enhanced by providing an insulation layer which is formed so that the circuit pattern is covered excepting at least a part of power source pattern or ground pattern on the substrate on which circuit pattern is formed, and a conductive layer which is formed so as to be connected to the uninsulated part of the power source pattern or the ground pattern on the insulation layer, by modifying pattern shape of the conductive layer and the insulation layer or by increasing or reducing the number of these layers.
Abstract:
An automatic wiring method includes a first step of finding locations at which diagonal wiring is required at the time of wiring processing, a second step of approximating the shapes of part pins associated with these locations by rectangular shapes and reducing and changing these approximated shapes into shapes capable of being wired by 90.degree. turns, a third step of executing automatic wiring processing for 90.degree. turns, a fourth step of finding a location at which a clearance between a wiring pattern obtained by the wiring processing for 90.degree. turns and an actual part pin becomes less than a stipulated value and a clearance error is generated, and a fifth step of shaping a 90.degree.-turn wiring pattern at this location into a diagonal wiring pattern so as to satisfy the clearance.
Abstract:
An electrical device assembly system composed of plug-in circuit boards each having a plurality of plug-in connectors at an edge presenting input and output terminals. Magazines each mounting a plurality of the circuit boards are provided. The magazines each have a rear side and are disposed adjacent to one another. Each plurality of plug-in circuit boards are mounted in a respective one of the magazines so that the plug-in connectors are located at the rear side. Rear wall circuit boards are fastened to the rear sides of the magazines and include plug-in counterconnectors for mating with corresponding ones of the plug-in connectors at the edges of the plug-in circuit boards. The plug-in connectors of each plurality of plug-in circuit boards define separate regions at the rear side of each magazine. At least one rear wall circuit board is fastened to two adjacent magazines and covers two adjacent ones of the regions, one each from the two adjacent magazines. The plug-in counterconnectors each have a plurality of electrical contacts corresponding to the input and output terminals, respectively, of the plug-in connectors. The rear wall circuit board includes conductor paths between selected contacts for forming the electrical connections between the input and output terminals. Respective ones of the input and output terminals of each plug-in circuit board are associated with the connector of the plurality of connectors which is closest to the adjacent magazine to which the respective ones of the input and output terminals are connected.
Abstract:
A device includes a printed circuit board substrate, an antenna connected to the printed circuit board substrate, an amplifier connected to the printed circuit board substrate, and a matching track having a first end electrically connected to an input of the amplifier and a second end electrically connected to an output of the antenna. The matching track has an outgrowth that is symmetrical along a median axis of the outgrowth. The matching track is rectilinear and has a constant width over an initial part extending between the widening area and the first end. A median axis of the initial part and the median axis of the outgrowth form an angle comprised between 60 and 120°.