Abstract:
An apparatus and method for flight control of an aircraft provides a body with adjustable intake ports ducting air into an internal intake manifold. Adjusting the openings of the intake ports changes the amount of air flowing over the surfaces surrounding the intakes, changing the amount of lift created by those surfaces. The intake manifold feeds air to at least one engine, and an exhaust manifold communicates the exhaust of the engine to exhaust exit ports. The exhaust manifold contains a plurality of moveable components that direct exhaust within the exhaust manifold and to particular exhaust exit ports for producing various levels of force imbalance among the exit ports. A compressor powered by the engine provides air to bleed-air ports on the wings. Varying lift on the forward surfaces with the intake ports, vectored exhaust, and bleed air are used to control and stabilize the aircraft during flight, obviating the need for aerodynamic control surfaces.
Abstract:
A vertical take-off and landing miniature aerial vehicle includes an upper fuselage segment and a lower fuselage segment that extend in opposite directions from a rotor guard assembly. A rotor rotates within the rotor guard assembly between the fuselage segments. Plural turning vanes extend from the rotor guard assembly beneath the rotor. Moreover, plural grid fins extend radially from the lower fuselage segment below the turning vanes. The aerial vehicle is capable of taking off and landing vertically. During flight, the aerial vehicle can hover and transition between a horizontal flight mode and a vertical flight mode using the grid fins.
Abstract:
An apparatus and method for flight control of an aircraft provides a body with adjustable intake ports ducting air into an internal intake manifold. Adjusting the openings of the intake ports changes the amount of air flowing over the surfaces surrounding the intakes, changing the amount of lift created by those surfaces. The intake manifold feeds air to at least one engine, and an exhaust manifold communicates the exhaust of the engine to exhaust exit ports. The exhaust manifold contains a plurality of moveable components that direct exhaust within the exhaust manifold and to particular exhaust exit ports for producing various levels of force imbalance among the exit ports. A compressor powered by the engine provides air to bleed-air ports on the wings. Varying lift on the forward surfaces with the intake ports, vectored exhaust, and bleed air are used to control and stabilize the aircraft during flight, obviating the need for aerodynamic control surfaces
Abstract:
An unmanned flying vehicle comprises an autonomous flying wing having at least two wing portions arranged substantially symmetrically about a center portion. Each wing portion is pivotally attached to each adjoining portion such that the wing portions are foldable for storage and openable for deployment. A preferred form is the so-called seagull wing having four wing portions. The vehicles may be programmable from a mother aircraft whilst being borne to a deployment zone using a data link which may be wireless.
Abstract:
An anti-submarine warfare system includes an unmanned nullsea-sittingnull aircraft housing submarine detecting equipment, the aircraft including a body portion having a catamaran configuration adapted for stably supporting the body portion when sitting in water, the body portion including a fuselage and laterally disposed sponsons connected to the fuselage via platforms, and submarine detecting equipment housed within the fuselage and adapted to be electronically linked to sonobuoys disposed in adjacent water locations.
Abstract:
The present invention is generally comprised of a sonotube-compatible unmanned aerial vehicle apparatus, hereinafter referred to as a UAV, and systems for launch and control of the UAV. The UAV is generally comprised of modular sections including a nose section, a payload section, a wing and fuel tank section, and a powerplant section. The modular sections are attached to adjacent sections by uniform lock sealing rings and related components. The present invention comprises an apparatus enabling very small, man portable, ballistically launched, autonomously or semi-autonomously controlled vehicle to be deployed with preprogrammed, communicated, or telemetry mission programming. A wide range of payload packages, including emergency supplies, sensors, and antenna assemblies, may be carried, used or deployed in flight. Man-portable operation is accomplished by the use of a launch canister apparatus. The launch canister comprises retractable launch stabilizing legs, turbine engine exhaust orifices, and various antennas. The launch canister apparatus alternatively comprises a modified type "A", "B", or "C" sonotube launch canister. The system of the invention also comprises a portable Command, Control, Communications, Computer, and Intelligence (C4I) control and sensing analysis console. The console is preferably ruggedized, waterproof, shockproof, and comprises necessary control and analysis computers, input/output devices, antennas, and related hardware and software for vehicle and mission control. A C4I console and/or launch canisters may be transported by means of a backpack adapted for man portability.
Abstract:
An aircraft control system for controlling an aircraft, particularly a free wing aircraft in low speed or hover regimes. An air speed sensor measures air speed of the aircraft and outputs an air speed signal to a control processor which processes the air speed signal with a speed control input signal. A control actuator actuates an aircraft control surface in response to the control surface control signal. The air speed sensor may include a shaft mounted impeller located in an airstream of the aircraft. A rotational speed sensor, coupled to the impeller, measures a rotational speed of the impeller and outputs a rotational speed signal as the air speed signal. In an alternative embodiment, the air speed sensor may include a vane located in an airstream of the aircraft and deflected in response to air flow in the airstream. In another embodiment, the speed sensor may include an angular position sensor which measures an angle between a free wing and the aircraft fuselage and outputs an angle measurement signal as the air speed signal. The aircraft control surface may comprises a control boom pivotally attached to a fuselage of the aircraft of a trim tab pivotally attached to a fuselage of the aircraft.
Abstract:
An unmanned aerial vehicle incorporates a single engine with bifurcated exhausts which are coupled to side mounted rotating nozzles through a swivel joint. Jet deflection means are mounted to the end of the rotating nozzles to achieve additional degrees of freedom for the aircraft.
Abstract:
A powered remotely piloted vehicle which is not controllable at the low landing speeds necessary for landing on a platform of small area is provided with a para-foil type wing deployable at the beginning of a recovery sequence, and is further provided with a rocket ejectable line which is passed to the landing platform and winched in so that the composite flight vehicle and deployed para-foil wing is drawn towards the platform after the manner of a kite.
Abstract:
A power plant for a small aircraft with a gas turbine engine that drives a number of electric generators, where a gear box transmit power from the engine shaft to the number of generators, the gear box having a single input shaft that drives a number of driven gears with each driven gear having a generator drive shaft that extends out both sides, and an electric generator connected to each side of the drive shaft. A compact arrangement of generators are formed where each generator can be disengaged from the drive shaft to regulate total electrical output or to prevent a damaged generator from causing damage to other parts of the system or aircraft.