Abstract:
A system and method for detecting fluorescence in a sample (140). Where an efficient light source (120) projects light onto said sample, and where fluorescence in said sample is detected by a photodetector (180).
Abstract:
A system and method for detecting fluorescence in a sample (140). Where an efficient light source (120) projects light onto said sample, and where fluorescence in said sample is detected by a photodetector (180).
Abstract:
An optical instrument monitors PCR replication of DNA in a reaction apparatus having a temperature cycled block with vials of reaction ingredients including dye that fluoresces in presence of double-stranded DNA. A beam splitter passes an excitation beam to the vials to fluoresce the dye. An emission beam from the dye is passed by the beam splitter to a CCD detector from which a processor computes DNA concentration. A reference strip with a plurality of reference emitters emit reference beams of different intensity, from which the processor selects an optimum emitter for compensating for drift. Exposure time is automatically adjusted for keeping within optimum dynamic ranges of the CCD and processor. A module of the beam splitter and associated optical filters is associated with selected dye, and is replaceable for different dyes.
Abstract:
Fluorescence-based sensors having favourably low detection limits and high sensitivity are disclosed. The sensors comprise one or more solution processable colour filters that are used together with organic LEDs and photodiodes. The colour filters are used to narrow the wavelength range of the OLED emission and/or to reject any light from reaching the photodiode which is not from analyte fluorescence, thereby enhancing the device sensitivity.
Abstract:
A biosensing device, as well as methods of forming a biosensing device and detecting presence of a biofilm are disclosed. The biosensing device may include a substrate, at least one radiation source on the substrate, at least one radiation detector on the substrate, and at least one reflector arranged on the substrate such that radiation emitted from the at least one radiation source is reflected toward the at least one radiation detector. The at least one radiation detector may be configured to detect an intensity of the radiation reflected from the at least one reflector. A biofilm growth on a portion of the at least one reflector may cause a change in the intensity of the radiation reflected from the at least one reflector relative to radiation reflected from the reflector in the absence of the biofilm growth.
Abstract:
A sensor device configured to be attached to a drug delivery device and configured to illuminate the drug delivery device when attached, the sensor device comprising: an OLED (29) having a transparent first electrode, a transparent second electrode and a central layer disposed between the first and second electrodes, the central layer comprising at least one organic layer, the at least one organic layer configured to emit light through the transparent first electrode; and an optical sensor (25) arranged to receive light reflected from a surface of the drug delivery device, wherein the central layer of the OLED has a region without the at least one organic layer and wherein the optical sensor is arranged, when the sensor device is attached to the drug delivery device, to view a predetermined area of the surface of the drug delivery device through the region without the at least one organic layer.
Abstract:
Chlorophyll fluorescence may be studied in response to a variety of environmental cues or conditions by growing phototrophic organisms under actinic illumination. Such illumination may be punctuated or disrupted to gain information about the photosynthetic properties or performance of the phototrophic organism. Instruments or devices for carrying out the method are also described.
Abstract:
There are provided methods and apparatuses for evaluating water pollution. The apparatus comprises at least one light source for exciting or causing activity of at least one type of microorganism or biological material; at least one photodetector for detecting a level of fluorescent light; and a chip disposed between the at least one light source and the detector, the chip comprising at least one microfluidic channel disposed for being exposed to light from the at least one light source and dimensioned for receiving a composition comprising the at least one type of microorganism or biological material and a water sample to be evaluated.