Abstract:
A wiring substrate for mounting a light emitting element, comprising: a substrate body comprising an insulating material and having a first surface and a back surface; and a cavity being opened into the first surface of said substrate body and having a mounting area for mounting a light emitting element at a bottom face of said cavity, wherein a metalized layer provided along a side face of said cavity and metalized layers provided in said substrate body are provided to continue to each other.
Abstract:
The invention relates to circuit boards and to screening circuits and components on such boards from stray rf interference when they are mounted as arrays or stacks of such circuit boards. The circuit boards (12, 14) are individually screened by conductive screening layers (16, 18) as known in the art and the individual screening layers are coupled together by layered interconnects (34) which connect corresponding screening layers (16, 18) of the individual circuit boards (12, 14) together, instead of by vias.
Abstract:
Circuit boards, microelectronic devices, and other apparatuses having slanted vias are disclosed herein. In one embodiment, an apparatus for interconnecting electronic components includes a dielectric portion having a first surface and a second surface. A first terminal is disposed on the first surface of the dielectric portion for connection to a first electronic component. A second terminal is disposed on the second surface of the dielectric portion for connection to a second electronic component. The apparatus further includes a passage extending through the dielectric portion along a longitudinal axis oriented at an oblique angle relative to the first surface. The passage is at least partially filled with conductive material electrically connecting the first terminal to the second terminal.
Abstract:
An electronics assembly is provided including a circuit board substrate having a top surface and a bottom surface and a plurality of thermal conductive vias extending from the top surface to the bottom surface. At least one electronics package is mounted to the top surface of the substrate. A heat sink device is in thermal communication with the bottom surface of the substrate. Thermal conductive vias are in thermal communication to pass thermal energy from the at least one electronics package to the heat sink. At least some of the thermal conductive vias are formed extending from the top surface to the bottom surface of the substrate at an angle.
Abstract:
Circuit boards, microelectronic devices, and other apparatuses having slanted vias are disclosed herein. In one embodiment, an apparatus for interconnecting electronic components includes a dielectric portion having a first surface and a second surface. A first terminal is disposed on the first surface of the dielectric portion for connection to a first electronic component. A second terminal is disposed on the second surface of the dielectric portion for connection to a second electronic component. The apparatus further includes a passage extending through the dielectric portion along a longitudinal axis oriented at an oblique angle relative to the first surface. The passage is at least partially filled with conductive material electrically connecting the first terminal to the second terminal.
Abstract:
A multi-layer printed circuit board (PCB) includes a first wire layer, a middle layer above the first wire layer, a second wire layer above the middle layer, and a slanting via formed in the middle layer and the second wire layer. The manufacturing method includes the steps of providing a first wire layer and forming a first wiring on the first wire layer, forming a middle layer on the first wire layer, forming a second wire layer on the middle layer, forming a slanting via in the middle layer and the second wire layer wherein the direction of the slanting via is not orthogonal to the first and the second wire layers, forming a second wiring on the second wire layer by an etching method, and forming an electroplated layer in the via to connect the first wiring and the second wiring.
Abstract:
Methods are provided for making plated through holes usable for inserting and attaching connector probes. In a first method, a curved plated through hole is formed by bonding curved etchable wires to a first substrate, plating the wires with a non-etchable conductive material, encasing the plated wires with a dielectric material to form a second substrate, planing the second substrate to expose the etchable wire, and etching the wires to leave plated through holes. In a second method, wires coated with a first etchable layer are initially bonded to a substrate, a second non-etchable plating layer is then applied over the first layer, and the first layer is etched away leaving plated through holes with wires disposed inside. In a third embodiment, a layer of masking material is initially deposited on a substrate and etched to form holes which are filled with a sacrificial fill material, the masking material is then removed, the fill material plated, grinding is performed to remove some plating to expose the fill material, and the fill material is then etched away leaving plated attachment wells. Probes may be attached to the plated through holes or attachment wells to create resilient spring contacts to form a wafer probe card assembly. A twisted tube plated through hole structure is formed by supporting twisted sacrificial wires coated with the plating material in a substrate, and later etching away the wires.
Abstract:
A build-up structure for chip to chip interconnects and System-In-Package utilizing multi-angle vias for electrical and optical routing or bussing of electronic information and controlled CTE dielectrics including mesocomposites to achieve optimum electrical and optical performance of monolithic structures. Die, multiple die, Microelectromechanical Machines (MEMs) and/or other active or passive components such as transducers or capacitors can be accurately positioned on a substrate such as a copper heatsink and multi-angle stud bumps can be placed on the active sites of the components. A first dielectric layer is preferably placed on the components, thereby embedding the components in the structure. Through various processes of photolithography, laser machining, soft lithography or anisotropic conductive film bonding, escape routing and circuitry is formed on the first metal layer. Additional dielectric layers and metal circuitry are formed utilizing multi-angle vias to form escape routing from tight pitch bond pads on the die to other active and passive components. Multi-angle vias can carry electrical or optical information in the form of digital or analog electromagnetic current, or in the form of visible or non-visible optical bussing and interconnections.
Abstract:
A build-up structure for chip to chip interconnects and System-In-Package utilizing multi-angle vias for electrical and optical routing or bussing of electronic information and controlled CTE dielectrics including mesocomposites to achieve optimum electrical and optical performance of monolithic structures. Die, multiple die, Microelectromechanical Machines (MEMs) and/or other active or passive components such as transducers or capacitors can be accurately positioned on a substrate such as a copper heatsink and multi-angle stud bumps can be placed on the active sites of the components. A first dielectric layer is preferably placed on the components, thereby embedding the components in the structure. Through various processes of photolithography, laser machining, soft lithography or anisotropic conductive film bonding, escape routing and circuitry is formed on the first metal layer. Additional dielectric layers and metal circuitry are formed utilizing multi-angle vias to form escape routing from tight pitch bond pads on the die to other active and passive components. Multi-angle vias can carry electrical or optical information in the form of digital or analog electromagnetic current, or in the form of visible or non-visible optical bussing and interconnections.
Abstract:
A flexible, compliant layer of a single low modulus material for connecting a chip die directly to a circuit card without encapsulation. The flexible compliant layer provides stress relief caused by CTE thermal mismatch in chip die and circuit card. An array of copper plated vias are formed in said compliant layer with each via terminating on opposing surfaces of the layer in copper pads. Rather than copper, other metals, such as gold or nickel, may also be used. An array of holes may be positioned between said array of vias to provide additional resiliency. The plated vias may be angled with respect to said opposing surfaces to allow additional vertical and horizontal stress relief. Connection of the pads on one surface to high melt C-4 solder balls or columns on a chip die results in solder filled vias. Low melt solder connection of the pads on the other surface to a circuit card allows non-destructive rework of the cards.