Abstract:
A method for TEM sample preparation with backside milling of a sample extracted from a workpiece in an energetic-beam instrument is disclosed, where the energetic-beam instrument comprises: a focused ion beam, a stage capable of motion and tilting, a TEM grid held in a fixed holder on the stage, the TEM grid having a plane and the holder mounted in a fixed orientation with respect to the stage, and a probe tip rotatably connected to a nanomanipulator; the sample having a top surface and a backside and a required plane for the TEM sample that is normal to the top surface of the sample, and the sample being attached to the probe tip; the method comprising: rotating the probe tip by an angle calculated according to the geometry of the apparatus; moving the stage to position the TEM grid so that the plane of the TEM grid is substantially parallel to the required plane for the TEM sample; attaching the extracted sample to the TEM grid and removing the attachment of the probe tip to the extracted sample; and, tilting the stage by a stage-tilt angle, while maintaining the holder in the fixed orientation with respect to the stage, so that the axis of the ion beam is made substantially parallel to the required plane for the TEM sample; thereby placing the extracted sample into position for allowing backside milling by the focused ion beam to prepare a thinned cross-sectional sample for TEM viewing.
Abstract:
A precursor delivery system for an irradiation beam instrument having a vacuum chamber includes an injection tube (340) for injecting gasses into the vacuum chamber of the instrument and a main gas line (290) having an inlet (295) and an outlet 335). The outlet (335)is connected to the injection tube, (340) and the inlet (295) is connected to a sequential pair of valves (120, 125) connected to a carrier gas source (150). A crucible (190) for holding precursor material is selectively connected to the main gas line (290) at a location between the pair of valves (120, 125) and the injection tube (340). The source (150) of carrier gas may be selectively connected to the inlet (295) by sequential operation of the pair of carrier gas valves (120, 125), so that pulses of carrier gas assist the flow of precursor material to the injection tube (340). Rapid purging of the system between precursors is enabled by a valve (110) selectively connecting the main line (290) to an envelope (300) in communication with the instrument vacuum. Methods of CVD and etching using the system are also disclosed.
Abstract:
We disclose an apparatus and method for detecting probe-tip (120) contact with a surface, generally inside a focused ion-beam instrument, where the probe tip (120) is attached to a capsule (130), and the capsule (130) is movably secured in a probe shaft (140). There is a fiber-optic cable (150) having a first end and a second end; a beam splitter (115) having first and second output ports; and a light source (100) connected to the beam splitter (115). The first output port of the beam splitter (115) is connected to the first end of the fiber-optic cable (150), and the second output port of the beam splitter (115) is connected to a photodiode (110). The second end of the fiber-optic cable (150) has a mirror (155) for reflecting incident light at approximately a ninety-degree angle to the axis of the optical path in the fiber-optic cable (150) and onto the capsule (130), so that the intensity of the light reflected back from the capsule (130) through the fiber-optic cable (150) is proportional to the deflection of the capsule (130) as the probe tip (120) makes contact with the surface.
Abstract:
An apparatus for testing flip-chip packages has a programmed computer (100), a test-engine stage (130) for applying an impact to at least one package (110) under test, and a monitoring stage (140). The test-engine stage (130) causes an impact on the package (110) on the side opposite its ball-grid array. The test-engine stage (130) has actuators connected to the test-engine stage (130) and the computer (100), for moving and aligning the test-engine stage (130). The monitoring stage (140) has a digital camera (300) connected to the computer (100) for transmitting digital images from the ball-grid array side of the package (110) to the computer (100). A microscope (290) is preferably connected to the digital camera (300). A sample stage (120) located between the test-engine stage (130) and the monitoring stage (140) holds the package (110 under test. The sample stage (120) has an acoustic transducer (190) capable of being removably connected to the package (110) under test. The acoustic transducer (190) is connected to the computer (100) for transmitting signals from the acoustic transducer (190) to the computer (100).
Abstract:
A gas injection system for an energetic-beam instrument having a vacuum chamber. The system has a cartridge containing a chemical serving as a source for an output gas to be delivered into the vacuum chamber. The cartridge has a reservoir containing the chemical, which rises to a fill line having a level defined by an amount of the chemical present in the reservoir at a given time, An outlet from the reservoir is coupled to an output passage through an outlet valve and configured so that when the system is tilted the outlet remains above the level of the fill line. Embodiments include isolation valves allowing the cartridge to be disconnected without destroying system vacuum.
Abstract:
A method for processing a sample in a charged-particle beam microscope. A sample is collected from a substrate and the sample is attached to the tip of a nanomanipulator. The sample is optionally oriented to optimize further processing. The nanomanipulator tip is brought into contact with a stabilizing support to minimize drift or vibration of the sample. The attached sample is then stabilized and available for preparation and analysis.
Abstract:
A method for attaching a frozen specimen to a manipulator probe tip typically inside a charged-particle beam microscope. The method comprises cooling the probe tip to a temperature at or below that of the frozen specimen, where the temperature of the frozen specimen is preferably at or below the vitrification temperature of water; bringing the probe tip into contact with the frozen specimen, and bonding the probe tip to the frozen specimen by flowing water vapor onto the region of contact between the probe tip and the frozen specimen. The bonded probe tip and specimen may be moved to a support structure such as a TEM grid and bonded to it by similar means. The probe tip can then be disconnected by heating the probe tip or applying a charged-particle beam.
Abstract:
A single-channel optical processing system for an energetic-beam instrument has separate sources for processing radiation (170) and illumination radiation (180) that are combined in a single optical path and directed to a sample surface (140) through a selffocusing rod lens (130). The self-focusing rod lens (130) thus has a working distance from the sample surface (140) that will not interfere with typical arrangements of ion beams (100) and electron beams (110) in such instruments. A combination of polarizers (220) and beam splitters (240) allows separation of the combined incident radiation (150) and the reflected radiation (160) from the sample surface (140) and returned through the same optical channel, so that the reflected radiation (160) may be directed to an optical detector (370), such as a camera or spectrometer.
Abstract:
An apparatus for performing automated in-situ lift-out of a sample (150) from a specimen (125) includes a computer (100) having a memory with computer-readable instructions, a stage (120) for a specimen (125) and a nano-manipulator (130). The stage (120) and the nano-manipulator (130) are controlled by motion controllers (110) connected to the computer (100). The nano-manipulator (130) has a probe tip (140) for attachment to samples (150) excised from the specimen (125). The computer-readable instructions include instructions to cause the stage motion controllers (110) and the nano-manipulator motion controllers (110), as well as an ion-beam source (170), to automatically perform in-situ lift-out of a sample (150) from the specimen (125).
Abstract:
A coupon (100) for preparing a TEM sample holder (170) comprises a sheet of material (120) that includes a TEM sample holder form (170). There is at least one section of the sheet (120) connecting the TEM sample holder form (170) to other portions of the sheet (120). A TEM sample holder (170) is formed by cutting the TEM sample holder form (170) from the coupon in a press. The cutting joins the tip point (160) of a nano-manipulator probe tip (150) with the formed TEM sample holder (170). The tip point (160) of the probe (150) has a sample (140) attached for inspection in a TEM.