Abstract:
A coupon for preparing a TEM sample holder comprises a sheet of material that includes a TEM sample holder form. There is at least one section of the sheet connecting the TEM sample holder form to other portions of the sheet. A TEM sample holder is formed by cutting the TEM sample holder form from the coupon in a press. The cutting joins the tip point of a nano-manipulator probe tip with the formed TEM sample holder. The tip point of the probe has a sample attached for inspection in a TEM.
Abstract:
A method for sample examination in a dual-beam FIB calculates a first angle as a function of second, third and fourth angles defined by the geometry of the FIB and the tilt of the specimen stage. A fifth angle is calculated as a function of the stated angles, where the fifth angle is the angle between the long axis of an excised sample and the projection of the axis of the probe shaft onto the X-Y plane. The specimen stage is rotated by the calculated fifth angle, followed by attachment to the probe tip and lift-out. The sample may then be positioned perpendicular to the axis of the FIB electron beam for STEM analysis by rotation of the probe shaft through the first angle.
Abstract:
A gas injection system for an energetic-beam instrument having a vacuum chamber. The system has a cartridge containing a chemical serving as a source for an output gas to be delivered into the vacuum chamber. The cartridge has a reservoir containing the chemical, which rises to a fill line having a level defined by an amount of the chemical present in the reservoir at a given time. An outlet from the reservoir is coupled to an output passage through an outlet valve and configured so that when the system is tilted the outlet remains above the level of the fill line. Embodiments include isolation valves allowing the cartridge to be disconnected without destroying system vacuum.
Abstract:
A gas injection system for an energetic-beam instrument having a vacuum chamber. The system has a cartridge containing a chemical serving as a source for an output gas to be delivered into the vacuum chamber. The cartridge has a reservoir containing the chemical, which rises to a fill line having a level defined by an amount of the chemical present in the reservoir at a given time. An outlet from the reservoir is coupled to an output passage through an outlet valve and configured so that when the system is tilted the outlet remains above the level of the fill line. Embodiments include isolation valves allowing the cartridge to be disconnected without destroying system vacuum.
Abstract:
A coupon for preparing a TEM sample holder comprises a sheet of material that includes a TEM sample holder form. There is at least one section of the sheet connecting the TEM sample holder form to other portions of the sheet. A TEM sample holder is formed by cutting the TEM sample holder form from the coupon in a press. The cutting joins the tip point of a nano-manipulator probe tip with the formed TEM sample holder. The tip point of the probe has a sample attached for inspection in a TEM.
Abstract:
A method for TEM sample preparation with backside milling of a sample extracted from a workpiece in an energetic-beam instrument such as a FIB-SEM is disclosed. The method includes rotating a nanomanipulator probe tip holding an extracted sample by an angle calculated according to the geometry of the apparatus; moving the instrument stage to position a TEM grid in a fixed holder so that the plane of the TEM grid is substantially parallel to the required plane for the TEM sample; attaching the extracted sample to the TEM grid; and, tilting the stage by a stage-tilt angle, while maintaining the holder in the fixed orientation with respect to the stage, so that the axis of the ion beam is made substantially parallel to the required plane for the TEM sample; thereby placing the extracted sample into position for allowing backside milling to prepare a thinned cross-sectional sample for TEM viewing.
Abstract:
A gas injection system for an energetic-beam instrument having a vacuum chamber. The system has a cartridge containing a chemical serving as a source for an output gas to be delivered into the vacuum chamber. The cartridge has a reservoir containing the chemical, which rises to a fill line having a level defined by an amount of the chemical present in the reservoir at a given time. An outlet from the reservoir is coupled to an output passage through an outlet valve and configured so that when the system is tilted the outlet remains above the level of the fill line. Embodiments include isolation valves allowing the cartridge to be disconnected without destroying system vacuum.
Abstract:
An apparatus for monitoring sample milling in a charged-particle instrument has a variable-tilt specimen holder (130) attached to the instrument tilt stage (120). The variable-tilt specimen holder (130) includes a first pivoting plate (260) having a slot (280) for holding a specimen (290) rotatably supported in the variable-tilt specimen holder (130). The first pivoting plate (260) has a range of rotation sufficient to move the preferred axis of thinning of the specimen (290) from a first position where the tilt stage (120) is placed at its maximum range of tilt and the angle between the preferred axis of thinning of the specimen (290) and the axis of the ion beam column (110) of the instrument is greater than zero, to a second position where the preferred axis for thinning of the specimen (290) is substantially parallel to the axis of the ion-beam column (110). A light detector (250) is positioned to intercept light passing through the specimen (290) as it is thinned by ion-beam milling. The intensity of the light passing through the specimen (290) may be compared to the intensity recorded for previous stages of milling to determine an endpoint for milling
Abstract:
Disclosed is a method for analyzing the composition of a microscopic particle (100) resting on a first sample surface (110). The method comprises positioning a micro-manipulator probe (120) near the particle; attaching the particle to the probe (120); moving the probe (120) and the attached particle (100) away from the first sample surface (110); positioning the particle on a second sample surface (150); and, analyzing the composition of the particle on the second sample surface (150) by energy-dispersive X-ray analysis or detection of Auger electrons. The second surface (150) has a reduced or non-interfering background signal during analysis relative to the background signal of the first surface (110). Also disclosed are methods for adjusting potentials after its transfer and relocation to the second sample surface (150).