Abstract:
In a capacitor, and a method of fabricating the same, the capacitor includes a lower electrode, a dielectric layer on the lower electrode, and an upper electrode on the dielectric layer, wherein the dielectric layer includes a lower dielectric region contacting the lower electrode, an upper dielectric region contacting the upper electrode, and at least one middle dielectric region between the lower dielectric region and the upper dielectric region, the at least one middle dielectric region having a less crystalline region than both the lower dielectric region and the upper dielectric region.
Abstract:
산화 알루미늄막/고유전체막/산화 알루미늄막으로 구성된 유전막을 포함하는 반도체 소자의 커패시터 및 그 제조방법에 대하여 개시한다. 본 발명에 의한 반도체 소자의 커패시터는 반도체 기판에 형성된 커패시터 하부 전극과 커패시터 하부 전극 상에 산화 알루미늄으로 형성된 제1 유전막, 제1 유전막 상에 산화 알루미늄보다 유전 상수가 큰 물질로 형성된 제2 유전막 및 제2 유전막 상에 산화 알루미늄으로 형성된 제3 유전막으로 구성된 유전막과 이 유전막 상에 형성된 커패시터 상부 전극을 포함한다. 본 발명에 의한 커패시터는 전력의 소모가 적고 고집적화에 유리하도록 단위 면적당 높은 커패시턴스를 갖는 등 여러 가지 전기적 특성이 우수하다.
Abstract:
수직으로 연장된 배선간 엠아이엠 커패시터를 갖는 로직소자 및 그것을 제조하는 방법이 개시된다. 상기 로직소자는 반도체 기판을 포함한다. 상기 반도체 기판 상부에 하부배선이 위치하고, 상기 하부배선 상부에 상부배선이 위치한다. 상기 하부배선과 상기 상부배선 사이에 U자형(U-shaped) 하부 금속플레이트가 개재된다. 상기 U자형 하부 금속플레이트는 상기 하부배선에 직접 접한다. 커패시터 유전막이 상기 하부 금속플레이트의 내면(inner surface)을 덮는다. 또한, 상기 커패시터 유전막은 상기 하부 금속플레이트의 가장자리(brim)와 상기 상부배선 사이에 개재된 연장부를 갖는다. 한편, 상부 금속플레이트가 상기 커패시터 유전막의 내면을 덮는다. 상기 상부 금속플레이트는 상기 상부배선에 직접 접하고, 상기 커패시터 유전막에 의해 한정된다.
Abstract:
A method for fabricating a hafnium oxide film is provided to obtain an improved leakage current characteristic and a higher permittivity than a conventional permittivity by forming a high permittivity layer of hafnium floating state and a leakage current suppression layer. A crystallized high permittivity layer of hafnium floating state (HfxOy;Y=1,X>0.5) is formed on a semiconductor substrate. A leakage current suppression layer oriented along a crystal structure of the high permittivity layer is formed on the crystallized high permittivity layer. The high permittivity layer has a permittivity of 25 to 120. The high permittivity layer having a thickness of 300Å to 1000Å is formed using CVD(chemical vapor deposition) method.
Abstract translation:提供一种制造氧化铪膜的方法,通过形成铪浮动状态的高介电常数层和泄漏电流抑制层,获得比常规介电常数更高的漏电流特性和更高的介电常数。 在半导体衬底上形成铪浮态(Hf x O y; Y = 1,X> 0.5)的结晶高介电常数层。 在结晶化高电容率层上形成沿着高电容率层的晶体结构取向的漏电流抑制层。 高电容率层的介电常数为25〜120。使用CVD(化学气相沉积)法形成厚度为300至1000的高介电常数层。
Abstract:
An analog capacitor having at least 3 high-k dielectric layers is provided to optimize a voltage coefficient of capacitance and a leakage current characteristic while having a high-k dielectric layer by making high-k dielectric layer with an excellent voltage coefficient of capacitance come in contact with plates and by interposing a high-k dielectric layer capable of preventing a leakage current between the high-k dielectric layers. A lower plate(11) is formed. An upper plate(15) corresponding to the lower plate is formed. At least three high-k dielectric layers(13) are interposed between the lower and upper plates, including a bottom dielectric layer(13a) in contact with the lower plate, a top dielectric layer(13c) in contact with the upper plate, and a middle dielectric layer(13b) interposed between the bottom and top dielectric layers. Each of bottom and top dielectric layers is a high dielectric layer having a small absolute value of the coefficient of a quadratic term of a voltage coefficient as compared with the middle dielectric layer. The middle dielectric layer is a high dielectric layer having a small leakage current as compared with the bottom and top dielectric layers, respectively.
Abstract:
PURPOSE: A semiconductor capacitor having bottom plate electrode and fabrication method thereof are provided to form a storage electrode of cylinder or stack type instead of a conventional method of exposing a bottom electrode using wet solution. CONSTITUTION: The first interlayer dielectric(205) having a conductive plug(210) is formed on a semiconductor substrate(200). A storage electrode(240) having cylindrical outside and inside parts is formed on the conductive plug. A dielectric layer(235) and plate electrode(230) are formed on the outside part of the storage electrode. A supporting layer beneath a bottom plate electrode(220) is formed to prevent short between the bottom plate electrode and the conductive plug.
Abstract:
The present invention provides a semiconductor device and a method manufacturing the same. The semiconductor device includes a first insulator film arranged on a substrate; a gate electrode arranged on the first insulator film; and a second insulator film including a first discharge site and arranged on the gate electrode and the first insulator film.
Abstract:
PURPOSE: A semiconductor device is provided to prevent foreign materials like ions from being diffused into a gate insulating layer by forming a nitride layer on a gate including a high density thin film. CONSTITUTION: A gate structure (110) includes a gate insulating layer and a gate electrode layer. A first nitride layer (120) is formed on a substrate and the gate structure. The first nitride layer includes silicon. A second nitride layer (130) is formed on the first nitride layer. The silicon atom fraction of the second nitride layer is lower than the silicon atom fraction of the first nitride layer.
Abstract:
PURPOSE: A method for manufacturing a semiconductor integrated circuit device is provided to prevent the shape deformation of a silicide layer by forming a stress buffer layer and a stress layer. CONSTITUTION: A gate pattern and a spacer are formed on a semiconductor substrate. The gate pattern comprises a gate insulating layer and a gate electrode. The spacer is arranged in the side wall of the gate pattern. A silicide layer(162) is formed on the semiconductor substrate which is revealed by the gate pattern and the spacer in a silicide process. A stress buffer layer(170) is formed on a product in which the silicide layer is formed. A stress layer(180) is formed on the stress buffer layer. The stress layer is a tension stress layer and the stress buffer layer is a compression stress layer.
Abstract:
A method for improving a thin film forming process of a wafer is provided to uniformly control a thickness of a thin film to be formed on a wafer by consistently maintaining an internal environment in the chamber. An inside of a chamber of a semiconductor fabricating apparatus is primarily cleaned(S100) by NF3 of 2000 to 5000 sccm, in which a wafer is not introduced in the chamber. After a thin film is formed on the inside of the chamber(S200), the inside of the chamber with the thin film is secondarily cleaned(S210). After the wafer is introduced into the chamber(S300) to form a thin film on the wafer, the wafer is withdrawn from the chamber, and the chamber is thirdly cleaned(S310).