웨이퍼 검사장치
    12.
    发明授权

    公开(公告)号:KR101929240B1

    公开(公告)日:2018-12-17

    申请号:KR1020170075927

    申请日:2017-06-15

    Abstract: 본 발명은 웨이퍼검사장치에 관한 것으로, 본 발명에 따르면, 자성박막이 형성된 웨이퍼의 일측면에 대하여 자기력선이 수직 또는 평행한 방향으로 진행하도록 자기장을 형성시키는 자기장발생부; 상기 웨이퍼의 적어도 일부 영역으로서 상기 자기장발생부에 의하여 형성된 자기장에 의한 영향이 미쳐지는 영역인 측정영역에 대하여, 마이크로파(microwave)를 주사시키는 마이크로파가이드부; 및 상기 마이크로파가이드부에 의해 상기 측정영역에 주사되어 반사(reflected) 또는 전도(transmitted)된 파(wave)를 수신하는 감지부;를 포함하므로 웨이퍼를 손상시키지 않는 비파괴방식으로 웨이퍼 상에 형성된 자성박막의 자기적 성질을 측정검사할 수 있으며, 자성박막이 형성된 웨이퍼 그 자체에 대하여 그대로 측정을 실시할 수 있으므로 생산성과 품질을 증진시켜줄 수 있는 기술이 개시된다.

    능동형 스핀 RFID 태그
    13.
    发明授权
    능동형 스핀 RFID 태그 有权
    主动旋转RFID标签

    公开(公告)号:KR101402784B1

    公开(公告)日:2014-06-11

    申请号:KR1020130030978

    申请日:2013-03-22

    CPC classification number: G06K19/0707

    Abstract: The present invention implements an active spin RFID tag, without an additional storage battery, using an ultra-low-power spin oscillator. The active spin RFID tag includes an energy harvesting means for harvesting peripheral energy; at least one spin oscillator for receiving power generated by the energy harvesting means to output an oscillation signal of a predetermined frequency, without being provided with an additional storage battery; and a spin modulator for modulating RFID data by using the oscillation signal output from the spin oscillator to output the modulated RFID data as an RF signal.

    Abstract translation: 本发明使用超低功率自旋振荡器来实现无附加蓄电池的有源自旋RFID标签。 主动旋转RFID标签包括用于收集外围能量的能量收集装置; 至少一个自旋振荡器,用于接收由所述能量采集装置产生的功率,以输出预定频率的振荡信号,而不设置附加的蓄电池; 以及自旋调制器,用于通过使用从自旋振荡器输出的振荡信号来调制RFID数据,以将调制的RFID数据作为RF信号输出。

    이중 자기 이방성 자유층을 갖는 자기 터널 접합 구조
    14.
    发明公开
    이중 자기 이방성 자유층을 갖는 자기 터널 접합 구조 有权
    具有双重磁性异相自由层的磁隧道结构

    公开(公告)号:KR1020100047985A

    公开(公告)日:2010-05-11

    申请号:KR1020080106942

    申请日:2008-10-30

    Inventor: 신경호 민병철

    Abstract: PURPOSE: A magnetic tunnel junction structure with a double magnetic anisotropic free layer are provided to improve reliability of a memory and thermal stability using a material whose element property is not deteriorated in a thermal process. CONSTITUTION: A first magnetic layer has a fixed magnetization direction. A second magnetic layer(30) has a reversible magnetization direction. A nonmagnetic layer is formed between the first magnetic layer and the second magnetic layer. The magnetization direction of the second magnetic layer is inclined to the plane of the second magnetic layer by magnetically combining a third magnetic layer(40) with the second magnetic layer. The vertical magnetic anisotropic energy is larger than the horizontal anisotropic energy. A crystallization structure separation layer(50) separates the crystal orientation between the second and third magnetic layers.

    Abstract translation: 目的:提供具有双磁各向异性自由层的磁性隧道结结构,以使用在热处理中其元素特性不劣化的材料来提高记忆的可靠性和热稳定性。 构成:第一磁性层具有固定的磁化方向。 第二磁性层(30)具有可逆的磁化方向。 在第一磁性层和第二磁性层之间形成非磁性层。 通过将第三磁性层(40)与第二磁性层磁结合,第二磁性层的磁化方向倾斜于第二磁性层的平面。 垂直磁各向异性能量大于水平各向异性能。 结晶结构分离层(50)分离第二和第三磁性层之间的晶体取向。

    유체 유동 시뮬레이션 방법 및 이를 수행하기 위한 기록 매체
    18.
    发明授权
    유체 유동 시뮬레이션 방법 및 이를 수행하기 위한 기록 매체 有权
    用于模拟流体流动和记录介质的方法

    公开(公告)号:KR101192335B1

    公开(公告)日:2012-10-26

    申请号:KR1020110045840

    申请日:2011-05-16

    Abstract: PURPOSE: A fluid simulation method and a recording medium performing the same are provided to increase a degree which velocity momentum is satisfied, thereby overcoming instability of a lattice Boltzmann model. CONSTITUTION: Space in which fluid flows is become dioxide by a lattice of a regular interval(S10). It assumes that particles of the fluid repetitively move and collide on the lattice(S20). Maxwell-Boltzmann distribution is compared with n-th velocity momentum of Maxwell-Boltzmann distribution with dioxide. A linear polynomial equation is induced(S30). A weight coefficient corresponding to a discrete velocity of the particles of the fluid is calculated(S40). [Reference numerals] (AA) Start; (BB) End; (S10) Step for becoming dioxide for a space which fluid flows as a lattice of a regular interval; (S20) Step for assuming that particles of the fluid repetitively move and collide on the lattice; (S30) Step for inducing a linear polynomial equation by comparing Maxwell-Boltzmann distribution and n-th velocity momentum of the Maxwell-Boltzmann distribution with dioxide; (S40) Step for calculating a weight coefficient corresponding to a discrete velocity of the particles of the fluid based on the linear polynomial equation; (S50) Step for drawing a lattice Boltzmann model by using the weight coefficient

    Abstract translation: 目的:提供流体模拟方法和执行该流体模拟方法的记录介质以增加满足速度动量的程度,从而克服格子波尔兹曼模型的不稳定性。 构成:流体流动的空间通过规则间隔的格子变成二氧化物(S10)。 它假定流体的颗粒重复地移动并碰撞在格子上(S20)。 麦克斯韦 - 波尔兹曼分布与麦克斯韦 - 波尔兹曼分布与二氧化碳的第n速度动量进行比较。 诱导线性多项式方程(S30)。 计算对应于流体颗粒的离散速度的重量系数(S40)。 (附图标记)(AA)开始; (BB)结束; (S10)流体作为规则间隔的格子流动的空间的二氧化物的步骤; (S20)假设流体的粒子重复地移动并碰撞在格子上的步骤; (S30)通过将Maxwell-Boltzmann分布的麦克斯韦 - 玻尔兹曼分布和第n速度动量与二氧化物进行比较来诱导线性多项式方程的步骤; (S40)基于线性多项式方程计算与流体粒子的离散速度对应的权重系数的步骤; (S50)使用权重系数绘制格子波尔兹曼模型的步骤

Patent Agency Ranking