Abstract:
A multi-bit delta sigma modulator is provided to be applied for a multi-bit high speed operation by delaying a feedback signal as much as one clock using a delayer and a differential delayer. A multi-bit delta sigma modulator includes a first integrator(301), a second integrator(303), an analog digital converter(305), a delayer(309), and a differential delayer(311). The first integrator integrates an input signal. The second integrator receives an input of the signal feedbacked from the differential delayer, and compensates for the delayed signal component. The analog digital converter converts the integrated signal into a digital signal. The delayer delays the signal outputted from the analog digital converter. The differential delayer differentiates and delays the signal outputted from the analog digital converter.
Abstract:
본발명의실시예에따른차동드라이버회로는제 1 드라이버, 제 2 드라이버, 제 1 축전기, 제 2 축전기, 과도구간전압합산회로, 그리고과도구간비대칭보상회로를포함할수 있다. 제 1 드라이버는제 1 구동신호에따라제 1 패드를제 1 전압으로구동할수 있다. 제 2 드라이버는제 2 구동신호에따라제 2 패드를제 2 전압으로구동할수 있다. 제 1 축전기는제 1 및제 2 패드의전압이변화하는과도구간에서, 제 1 패드의전압변화를일단으로제공받아타 단으로전달할수 있다. 제 2 축전기는과도구간에서제 2 패드의전압변화를일단으로제공받아타 단으로전달할수 있다. 과도구간전압합산회로는제 1 및제 2 축전기를통해각각전달된전압을합산할수 있다. 과도구간비대칭보상회로는과도구간전압합산회로의합산된전압에따라제 1 및제 2 구동신호중 적어도하나의슬로프(Slope)를조절하여과도구간에서의제 1 및제 2 드라이버의슬루율비대칭을보정할수 있다.
Abstract:
본 발명은 아날로그 회로에서의 독립적으로 dB-선형 이득 제어가 가능한 이득 조절 장치에 관한 것으로, 본 발명의 이득 조절 장치는, 제1 고정 저항 및 선형적으로 가변이 가능한 제1 가변 저항을 구비하며, 상기 제1 가변 저항 및 상기 제1 고정 저항은 각각 제1 입력 신호 및 상기 제1 입력 신호와 부호가 다른 제2 입력 신호를 입력받아 제1 출력단으로 전류를 출력하는 제1 입력 저항부와, 제2 고정 저항 및 선형적으로 가변이 가능한 제2 가변 저항을 구비하며, 상기 제2 고정 저항 및 상기 제2 가변 저항은 각각 상기 제1 입력 신호 및 상기 제2 입력 신호를 입력받아 제2 출력단으로 전류를 출력하는 제2 입력 저항부를 포함한다. 본 발명의 이득 조절 장치는 독립적으로 dB-선형 이득 조절이 가능하므로 연속시간 SDM, 연속시간 필터, 연속시간 ADC 등의 회로에 결합이 용이하며, 소형화, 저전력화를 구현할 수 있는 효과가 있다. dB-linear, VGA, PGA, AGC, 연속시간 델타 시그마, 연속시간 ADC, 아날로그 필터
Abstract:
본 발명은 마이크로폰과 연결되어 상기 마이크로폰에서 생성된 전류 신호를 선형성적으로 증폭시켜 출력하는 리드아웃 회로에 관한 것으로, 상기 리드아웃 회로는 0과 1 사이의 증폭이득을 가지는 증폭부, 그리고 상기 증폭부의 입력단과 출력단 사이에 연결되어 있는 피드백 저항을 포함하며,상기 증폭부의 상기 증폭이득이 1과 가까워질수록 임력 임피스던가 고입력 임피던스를 가짐을 특징으로 한다. 본 발명의 리드아웃회로는 상기 증폭이득으로 인해 상기 프리앰프의 입력 임피던스가 고입력 임피던스를 가질 수 있으며, CMOS 공정으로 구현가능하게 된다. 마이크로폰, 커패시터, 표준 CMOS 공정, 리드아웃 회로
Abstract:
PURPOSE: A current switch driving circuit and a digital to analog converter are provided to prevent a working speed from being extremely reduced due to switching and blocking of a current path by using a digital to analog converter. CONSTITUTION: A current switch driving circuit(400) comprises a control unit(401), a first PMOS(P-channel Metal Oxide Semiconductor) transistor(405a), an NMOS(N-channel metal oxide semiconductor) transistor(405b), and a second PMOS(405c) transistor. A source terminal of the first PMOS transistor is connected to VDD(Voltage of drain and drain). A gate terminal of the first PMOS transistor receives an input signal. A drain terminal of the first PMOS transistor is connected to a drain terminal of the NMOS transistor to output a driving signal of a current switch. The drain terminal of the NMOS transistor is connected to the drain terminal of the first PMOS transistor. The gate terminal of the NMOS transistor receives the input signal. A source terminal of the NMOS transistor is connected to a source terminal of the second PMOS transistor. The control unit maintains a turned-on state of the second PMOS transistor.
Abstract:
PURPOSE: An active type RC integrator and a continuous time sigma-delta modulator are provided to improve the gain of an active type RC integrator by turning on a switch. CONSTITUTION: A first base resistor(RBASE1) is connected between a first input node and the positive input terminal of an amplifier. A second base resistor(RBASE2) is connected between a second input node and the negative input terminal of the amplifier. A first resistor part(1) is connected between the second input node and the positive input terminal of the amplifier. A second resistor part(2) is connected between the first input node and the negative input terminal of the amplifier. A first switch(SWDUM1) switches on and off the first base resistor. A second switch(SWDUM2) switches on and off the second base resistor. The gain of an input signal is controlled according to the input resistance varied by the first resistor part and the second resistor part.
Abstract:
Provided are a dynamic element-matching method, a multi-bit Digital-to-Analog Converter (DAC), and a delta-sigma modulator with the multi-bit DAC and delta-sigma DAC with the multi-bit DAC. The dynamic element-matching method relates to preventing periodic signal components (in-band tones) from being generated from a delta-sigma modulator of a delta-sigma Analog-to-Digital Converter (ADC) and a multi-bit DAC used in a delta-sigma DAC. Unit elements are selected in a new sequence according to a simple algorithm every time that each of unit elements is selected once, and thus the unit elements are not periodically used. Consequently, it is possible to prevent in-band tones caused by a conventional Data Weighted Averaging (DWA) algorithm.
Abstract:
A circuit for suppressing a pulse noise according to the present invention includes a filter circuit for converting a pulse type input signal into a filter signal of an increasing or decreasing type; a level reset circuit for receiving the input and output signals to reset the filter signal; and an output circuit for converting the filter signal into the output signal having a pulse type. The level reset circuit resets the filter signal into a high level when the input and output signals are high levels and resets the filter signal into a low level when the input and output signals are low levels. When the input and output signals have mutually different levels, the level reset circuit does not reset the filter signal. A method of suppressing a pulse noise according to the present invention includes the steps of converting a pulse type input signal into a filter signal of an increasing or decreasing type; receiving the input and output signals to reset the filter signal; and converting the filter signal into the output signal having a pulse type. According to the reset operation, the filter signal is reset into a high level when the input and output signals are high levels, and the filter signal is reset into a low level when the input and output signals are low levels. When the input and output signals have mutually different levels, the filter signal is not reset.